K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

\(A=1+2+2^2+2^3+...+2^{100}\)

\(2A=2+2^2+2^3+3^4+...+2^{101}\)

\(2A-A=2^{101}-1\)

\(A=2^{101}-1\)

20 tháng 8 2018

Bài giải : 

A = 1 + 2 + 2^2 + 2^3 + ... + 2^100 

2A = 2 + 2^2+ 2^3 + 2^4 + ... + 2^101

2A - A = ( 2 + 2^2+ 2^3 + 2^4 + ... + 2^101 ) - ( 1 + 2 + 2^2 + 2^3 + .... + 2^100 ) 

A = 2^101 - 1

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

15 tháng 8 2021

khó vậy 

15 tháng 8 2021
🤨🤨??????
14 tháng 7 2018

A= \(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

2A= \(2.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\right)\)

2A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

⇒ 2A- A= \(1-\dfrac{1}{2^{100}}\)

⇒ A= \(1-\dfrac{1}{2^{100}}\)

B= \(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

3B= \(3.\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

3B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

⇒ 3B- B= \(1-\dfrac{1}{3^{100}}\)

⇒ B.(3-1)= \(1-\dfrac{1}{3^{100}}\)

⇒ 2B= \(1-\dfrac{1}{3^{99}}\)

⇒ B= \(\left(1-\dfrac{1}{3^{99}}\right):2\)

⇒ B= \(\dfrac{1}{2}-\dfrac{1}{2.3^{99}}\)

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450