Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
b;
B=1+ (7-5) + (11-9) + ...+(101-99)
B=1+2+2+..+2
B=1+25.2=51
2.
a.
ĐK : x+2 >=0 => x>=-2
\(\left|x+2\right|-x=2\\ \Rightarrow\left|x+2\right|=2+x\\ \Rightarrow\left[{}\begin{matrix}x+2=x+2\\x+2=-x-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\2x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}0x=0\\x=-2\end{matrix}\right.\)
Vậy x=-2
\(a)\)\(\left(50-6.x\right).18=2^3.3^2.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=8.9.5\)
\(\Leftrightarrow\)\(\left(50-6.x\right).18=360\)
\(\Leftrightarrow\)\(\left(50-6.x\right)=360\div18\)
\(\Leftrightarrow\)\(50-6.x=20\)
\(\Leftrightarrow\)\(6.x=50-20\)
\(\Leftrightarrow\)\(6.x=30\)
\(\Leftrightarrow\)\(x=5\)
\(b)\)\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=7450\)
\(\Leftrightarrow\)\(100x+\left(1+2+3+...+100\right)=7450\)
\(\Leftrightarrow\)\(100x+5050=7450\)
\(\Leftrightarrow\)\(100x=7450-5050\)
\(\Leftrightarrow\)\(100x=2400\)
\(\Leftrightarrow\)\(x=24\)
b.
(x+1)+(x+2)+...+(x+100)=7450
=> 100x + (1+2+3+...+100)=7450
=>100x + (100+1).50=7450
=>100x=2400
=>x=24
b,(x-\(\frac{1}{2}\)).(x-6)=0
=>\(\orbr{\begin{cases}x-\frac{1}{2}=0\\x-6=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=\frac{1}{2}\\x=6\end{cases}}\)
c, x-\(\frac{1}{2}\)=2.5-x
=>x+x=10+\(\frac{1}{2}\)
=>2x=\(\frac{20}{2}+\frac{1}{2}\)=\(\frac{21}{2}\)
=>x=\(\frac{21}{4}\)
Bài 1 :
S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)
= 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Ta có : (12+13+14+....+110)×x=19+28+....+82+91(12+13+14+....+110)×x=19+28+....+82+91
Đặt A=19+28+....+82+91A=19+28+....+82+91
=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)
=1+102+103+...+109=102+103+....+109+1010=1+102+103+...+109=102+103+....+109+1010
=(12+13+14+....+110)×10=(12+13+14+....+110)×10 (1)
Từ (1), suy ra:
(12+13+14+...+110)×x=(12+13+14+....+110)×10(12+13+14+...+110)×x=(12+13+14+....+110)×10
⇒x=10⇒x=10
Vậy x=10x=10
~ Học tốt ~
Ta có : (12+13+14+....+110)×x=19+28+....+82+91(12+13+14+....+110)×x=19+28+....+82+91
Đặt A=19+28+....+82+91A=19+28+....+82+91
=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)
=1+102+103+...+109=102+103+....+109+1010=1+102+103+...+109=102+103+....+109+1010
=(12+13+14+....+110)×10=(12+13+14+....+110)×10 (1)
Từ (1), suy ra:
(12+13+14+...+110)×x=(12+13+14+....+110)×10(12+13+14+...+110)×x=(12+13+14+....+110)×10
⇒x=10⇒x=10
Vậy x=10x=10
~ Học tốt ~