K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2015

C1: \(A=\left(\frac{36}{6}-\frac{4}{6}+\frac{3}{6}\right)-\left(\frac{150}{30}+\frac{50}{30}-\frac{45}{30}\right)-\left(\frac{18}{6}-\frac{14}{6}+\frac{15}{6}\right)\)

\(=\frac{35}{6}-\frac{155}{30}-\frac{19}{6}=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=-\frac{15}{6}=-2\frac{1}{2}\)

C2: \(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)

\(=\left(6-5-3\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)

\(=-2-0-\frac{1}{2}=-2\frac{1}{2}\)

9 tháng 5 2018

xy3+4xy3-3xy3

=5xy3-3xy3 = 2xy3

tươg tự

Bài 2 : Thay zô có j kó đâu ==

14 tháng 6 2016

\(A=x^2-2x-y+3y-1\)

\(B=-2x^2+3y^2-5x+y+3\)

a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)

\(=-x^2+3y^2-7x+3y+2\)

\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)

\(=3x^2-3y+3x+y-4\)

b) tại x=1 ; x=-2 ta có: 
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)

\(A=1-2+2-6-1=-6\)

Vậy -6 là giá trị của đa thức A tại x=1 y=-2

14 tháng 6 2016

a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)

                \(=-x^2+3y^2-7x+3y+2\)

\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)

           \(=3x^2-3y^2+3x+2y-4\)

b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)

                   \(=1-2+2-6-1\)

                   \(=-6\)

 

 

25 tháng 3 2018

\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)

=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)=     0