Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3x^2-3x+7-4x^2+5x-3+x^2-2x\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-3x+5x-2x\right)+4\)
=4
_ Tại \(x=1;y=\dfrac{1}{2}\) thì:
\(1^2\left(\dfrac{1}{2}\right)^3+1.\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{1}{2}=\dfrac{5}{8}\)
Vậy giá trị của b/t đại số = \(\dfrac{5}{8}.\)
thay x=1; y= 1/2 vào biểu thức x^2y^3+xy ta được
1^2 x (1/2)^3 + 1 x 1/2
= 1 x 1/8 + 1/2
=1/8 + 4/8
=5/8
vậy giá trị của biểu thức x^2y^3+xy tại x=1; y=1/2 là:5/8
\(A=x^2-2x-y+3y-1\)
\(B=-2x^2+3y^2-5x+y+3\)
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)
\(=3x^2-3y+3x+y-4\)
b) tại x=1 ; x=-2 ta có:
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)
\(A=1-2+2-6-1=-6\)
Vậy -6 là giá trị của đa thức A tại x=1 y=-2
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=3x^2-3y^2+3x+2y-4\)
b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)
\(=1-2+2-6-1\)
\(=-6\)
x^2=a;y^2=b(Đk:a,b không âm)
Từ giả thiết suy ra a+b=2
=>3x^4+5x^2y^2+2y^4+2y^2
=3a^2+5ab+2b^2+2b
=(3a^2+3ab)+(2ab+2b^2)+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4.2+2*\.2=12
Đặt x^2=a;y^2=b(với Đk:a,b không âm)
Từ giả thiết suy ra a+b=2
=>3x^4+5x^2y^2+2y^4+2y^2
=3a^2+5ab+2b^2+2b
=(3a^2+3ab)+(2ab+2b^2)+2b
=3a(a+b)+2b(a+b)+2b
=(a+b)(3a+2b)+2b
=2(3a+2b)+2b
=2(2a+2b)+2a+2b
=4.2+2.2=12