Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng hàng đẳng thức bình phương tổng 2 số là auto ra, cái chính là tách khéo léo để tạo được thành hàng đẳng thức nhá !!!
a) \(498^2+996.502+502^2\)
\(=498^2+2.498.502+502^2\)
\(=\left(498+502\right)^2\)
\(=1000^2\)
\(=1000000\)
b) \(126^2-52.126+26^2\)
\(=126^2-2.26.126+26^2\)
\(=\left(126-26\right)^2\)
\(=100^2\)
\(=10000\)
a: \(A=\dfrac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}=2005\)
b: \(B=\dfrac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=2004\)
\(A=\frac{2004^3+1}{2004^2-2003}\)
\(A=\frac{2004+1}{1-2003}\)\(=\frac{2005}{-2002}\)
\(B=\frac{2005^3-1}{2005^2+2006}\)\(=\frac{2005-1}{1+2006}=\frac{2004}{2007}\)
\(\Rightarrow A>B\)
\(A=\frac{2004^3+1}{2004^2-2003}\)
\(A=\frac{\left(2004+1\right)\left(2004^2-2004+1\right)}{2004^2-2003}\)
\(A=\frac{2005.\left(2004^2-2003\right)}{2004^2-2003}=2005\)
\(B=\frac{2005^3-1}{2005^2+2006}\)
\(B=\frac{\left(2005-1\right)\left(2005^2+2005+1\right)}{2005^2+2006}=\frac{2004.\left(2005^2+2006\right)}{2005^2+2006}=2004\)
Tham khảo nhé~
\(A=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2003-2004\right)\left(2003+2004\right)+2005^2\)
\(=2005^2-\left(1+2+3+...+2004\right)\)
=2005^2-2009010
=2011015
Ta có: \(K=1^2-2^2+3^2-4^2+......+2005^2\)
\(\Rightarrow K=1^2+\left(3^2-2^2\right)+\left(5^2-4^2\right)+.....\) \(+\left(2005^2-2004^2\right)\)
\(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)\)\(+......+\left(2005-2004\right)\left(2005+2004\right)\)
\(\Rightarrow K=1+5+9+13+.....+4009\)
Số số hạng trong tổng K là \(\frac{4009-1}{4}+1=1003\)
\(\Rightarrow K=\frac{\left(4009+1\right).1003}{2}=2005.1003\) = 2011015
Bài 11:
1) Sửa lại đề là: \(A=127^2+146.127+73^2\)
\(\Rightarrow A=127^2+2.127.73+73^2\)
\(\Rightarrow A=\left(127+73\right)^2\)
\(\Rightarrow A=200^2\)
\(\Rightarrow A=40000\)
Vậy \(A=40000.\)
2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)
\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)
\(\Rightarrow B=18^8-\left(18^8-1\right)\)
\(\Rightarrow B=18^8-18^8+1\)
\(\Rightarrow B=0+1\)
\(\Rightarrow B=1\)
Vậy \(B=1.\)
4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
\(\Rightarrow D=\frac{3^{32}-1}{2}\)
Bạn sửa lại đề bài câu 2) nhé ^^
2) \(a+b+c+d=0\Leftrightarrow a+b=-c-d\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-\left[c^3+d^3+3cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3cd\left(c+d\right)-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\)
Phần a thành nhân tử sẵn rồi bạn:)
b,\(x^6-9x^3+8=x^6-x^3-8x^3+8\)
\(=x^3\left(x^3-1\right)-8\left(x^2-1\right)\)
\(=x^3\left(x-1\right)\left(x^2+x+1\right)-8\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^4-x^3-8x-1\right)\)
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009