Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : dễ bạn tự làm được :)
Bài 2 :
Ta có :
\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow\)\(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Ta có : B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì : 2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
a) 7 chia hết cho 7
7^2 chia hết cho 7
7^3 chia hết cho 7
.....
7^1000 chia hết cho 7
\(\Rightarrow\)A chia hết cho 7(1)
7 không chia hết cho 7^2
7^2 chia hết cho 7^2
7^3 chia hết cho 7^2
..
7^1000 chia hết cho 7^2
\(\Rightarrow\)A không chia hết cho 7^2(2)
Từ (1) và (2)\(\Rightarrow\)A không phải là số chính phương
b) Ta thấy: 20^2016 có tận cùng là0
11^2017 có tận cùng là 1
2016^2018 có tận cùng là 6
\(\Rightarrow\)B có tận cùng là 7
\(\Rightarrow\)B không phải là số chính phương
Ta có : \(A=7+7^2+7^3+7^4+...+7^{100}\)
\(A=7+7.7+7^2.7+7^3.7+...+7^{99}.7\)
\(A=7\left(1+7+7^2+7^3+...+7^{99}\right)\)
Vì : \(7⋮7\Rightarrow7\left(1+7+7^2+7^3+...+7^{99}\right)⋮7\)
Tức là \(A\) là số chính phương
a) S = 1 + 3 + 5 + … + 2015 + 2017
=> S = ( 2017 + 1 ) . 1009 : 2
=> S = 1 018 081
b) 7 + 11 + 15 + 19 + … + 51 + 55
=> S = ( 55 + 7 ) . 13 : 2
=> S = 403
c) S = 2 + 4 + 6 + ...2016+ 2018
=> S = ( 2018 + 2 ) . 1009 : 2
=> S = 1 019 090
a, S = 1 + 3 + 5 + ... + 2015 + 2017 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2017 - 1 ) : 2 + 1 = 1009 ( số )
=> S = ( 1 + 2017 ) . 1009 : 2 = 1018081
b) S = 7 + 11 + 15 + 19 + ... + 51 + 55 ( cách đều 4 đơn vị )
S có số số hạng là :
( 55 - 7 ) : 4 + 1 = 13 ( số )
=> S = ( 7 + 55 ) . 13 : 2 = 403
c) S = 2 + 4 + 6 + ... + 2016 + 2018 ( cách đều 2 đơn vị )
S có số số hạng là :
( 2018 - 2 ) : 2 + 1 = 1009 ( số )
=> S = ( 2 + 2018 ) . 1009 : 2 = 1019090
\(A=11^{2018}-11^{2017}\)
\(\Rightarrow A=11^{2017}.11-11^{2017}.1\)
\(\Rightarrow A=11^{2017}.10\)
B=\(11^{2017}-11^{2016}\)
\(\Rightarrow B=11^{2016}.11-11^{2016}.1\)
\(=11^{2016}.10\)
Rồi so snahs nếu số nào lớn thì số đó lớn
mk cho đáp án nha:A>B
triệu