K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{4}\)

mà x+y+z=32

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{4}=\dfrac{x+y+z}{5+7+4}=\dfrac{32}{16}=2\)

=>\(x=2\cdot50=10;y=2\cdot7=14;z=2\cdot4=8\)

Ko cần chỉnh 😁

22 tháng 10 2017

a, Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\)\(5x+y-2z=28\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)

+) \(\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)

+) \(\dfrac{y}{6}=2\Rightarrow y=12\)

+) \(\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)

Vậy ...

b, Ta có:

\(3x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

\(7y=5z\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\)

Ta lại có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)\(x-y+z=32\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

+) \(\dfrac{x}{10}=2\Rightarrow x=20\)

+) \(\dfrac{y}{15}=2\Rightarrow y=30\)

+) \(\dfrac{z}{21}=2\Rightarrow z=42\)

Vậy ...

22 tháng 10 2017

giải nốt mk câu c , d đc k ak haha

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)\(x-y+z=36\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\Rightarrow\)\(x=5.6=30\)
         \(y=6.6=36\)

         \(z=7.6=30\)

b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)\(x+y-z=32\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)

\(\Rightarrow\)\(x=-4.5=-20\)

         \(y=-4.-6=24\)

         \(z=-4.7=-28\)

c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.3=6\)
         \(z=2.2=4\)

d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.2=4\)

          \(z=3.2=6\)

Hok tốt!

@Kaito Kid

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

10 tháng 8 2016

Có:

3.x = 2.y => x/2 = y/3

7.y = 5.z => y/5 = z/7

=> x/2 = y/3 ; y/5 = z/7

Có x/2 = y/3 => x/10 = y/15 (1)

      y/5 = z/7 => y/15 = z/21 (2)

Từ (1) và (2) suy ra:

x/10 = y/15 = z/21 = x - y  + z/10 - 15 + 21 = 32/16 = 2

=> * x/10 = 2 => x = 2.10 = 20

     * y/15 = 2 => y = 2.15 = 30

     * z/21 = 2 => z = 2.21 = 42

Vậy x = 20 ; y = 30 ; z = 42

Ủng hộ nha

10 tháng 8 2016

bạn chuyển 3x=2y và 7y=5z ra phân số

sau đó quy đồng mẫu các phân số 

sau đó áp dụng dãy tỉ số bằng nhau

25 tháng 9 2016

3x = 2y ; 7x = 5z

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tích chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=2\Rightarrow z=42\)

20 tháng 7 2023

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

17 tháng 10 2020

a) Đặt \(\frac{x}{-3}=\frac{y}{5}=k\left(k\ne0\right)\)

\(\Rightarrow x=-3k\)\(y=5k\)

Ta có: \(xy=\left(-3k\right).5k=-15k^2=-\frac{5}{27}\)

\(\Rightarrow k^2=\frac{1}{81}\)\(\Rightarrow k=\pm\frac{1}{9}\)

+) Nếu \(k=\frac{-1}{9}\)\(\Rightarrow x=\left(\frac{-1}{9}\right).\left(-3\right)=\frac{1}{3}\)\(y=\frac{-1}{9}.5=\frac{-5}{9}\)

+) Nếu \(k=\frac{1}{9}\)\(\Rightarrow x=\frac{1}{9}.3=\frac{1}{3}\)\(y=\frac{1}{9}.5=\frac{5}{9}\)

Vậy \(x=\frac{1}{3}\)\(y=\frac{-5}{9}\)hoặc \(x=\frac{1}{3}\)\(y=\frac{5}{9}\)

18 tháng 10 2020

Bài này sử dụng tính chất gì vậy ạ?