Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\Leftrightarrow\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}\) và \(5x+y-2z=28\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{50}=\dfrac{y}{6}=\dfrac{2z}{42}=\dfrac{5x+y-2z}{50+6-42}=\dfrac{28}{14}=2\)
+) \(\dfrac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)
+) \(\dfrac{y}{6}=2\Rightarrow y=12\)
+) \(\dfrac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)
Vậy ...
b, Ta có:
\(3x=2y\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
\(7y=5z\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\)
Ta lại có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\) và \(x-y+z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
+) \(\dfrac{x}{10}=2\Rightarrow x=20\)
+) \(\dfrac{y}{15}=2\Rightarrow y=30\)
+) \(\dfrac{z}{21}=2\Rightarrow z=42\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)và\(x-y+z=36\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
\(\Rightarrow\)\(x=5.6=30\)
\(y=6.6=36\)
\(z=7.6=30\)
b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)và\(x+y-z=32\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)
\(\Rightarrow\)\(x=-4.5=-20\)
\(y=-4.-6=24\)
\(z=-4.7=-28\)
c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.3=6\)
\(z=2.2=4\)
d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)
\(\Rightarrow\)\(x=2.5=10\)
\(y=2.2=4\)
\(z=3.2=6\)
Hok tốt!
@Kaito Kid
Có:
3.x = 2.y => x/2 = y/3
7.y = 5.z => y/5 = z/7
=> x/2 = y/3 ; y/5 = z/7
Có x/2 = y/3 => x/10 = y/15 (1)
y/5 = z/7 => y/15 = z/21 (2)
Từ (1) và (2) suy ra:
x/10 = y/15 = z/21 = x - y + z/10 - 15 + 21 = 32/16 = 2
=> * x/10 = 2 => x = 2.10 = 20
* y/15 = 2 => y = 2.15 = 30
* z/21 = 2 => z = 2.21 = 42
Vậy x = 20 ; y = 30 ; z = 42
Ủng hộ nha
3x = 2y ; 7x = 5z
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tích chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
a) Đặt \(\frac{x}{-3}=\frac{y}{5}=k\left(k\ne0\right)\)
\(\Rightarrow x=-3k\); \(y=5k\)
Ta có: \(xy=\left(-3k\right).5k=-15k^2=-\frac{5}{27}\)
\(\Rightarrow k^2=\frac{1}{81}\)\(\Rightarrow k=\pm\frac{1}{9}\)
+) Nếu \(k=\frac{-1}{9}\)\(\Rightarrow x=\left(\frac{-1}{9}\right).\left(-3\right)=\frac{1}{3}\); \(y=\frac{-1}{9}.5=\frac{-5}{9}\)
+) Nếu \(k=\frac{1}{9}\)\(\Rightarrow x=\frac{1}{9}.3=\frac{1}{3}\); \(y=\frac{1}{9}.5=\frac{5}{9}\)
Vậy \(x=\frac{1}{3}\); \(y=\frac{-5}{9}\)hoặc \(x=\frac{1}{3}\); \(y=\frac{5}{9}\)
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{4}\)
mà x+y+z=32
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{4}=\dfrac{x+y+z}{5+7+4}=\dfrac{32}{16}=2\)
=>\(x=2\cdot50=10;y=2\cdot7=14;z=2\cdot4=8\)