K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

a) \(x^4+324=\left(x^2\right)^2+18^2=\left(x^2+18\right)\left(x^2-18\right)\)

b) c) d ) ko phân tích đc 

xem lại đề

29 tháng 9 2018

à câu a nhầm :v

30 tháng 9 2018

xin lỗi bạn nha!!

mình ko thể làm được bài này!!

ko phải vì mình ko biết làm... mà tại bàn phím của mình ko ghi được số...

( có ai biết sđt này ko?? : 09831283 )

30 tháng 9 2018

Ba bài đầu mình nt rầu đó thêm bài này nữa là xong nhoa

d) x8+x7+1=(x8+x7+x6)+(x5+x4+x3)+(x2+x+1)-(x6+x5+x4)-(x3+x2+x)

             =x6(x2+x+1)+x3(x2+x+1)+(x2+x+1)-x4(x2+x+1)-x(x2+x+1)

             =(x2+x+1)(x6-x4+x3-x+1)

Chúc Haru học tốt nha!

29 tháng 10 2018

\(x^8+x^7+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

2 tháng 11 2018

\(x^5-x^4-1\)

\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)

\(=x^2\left(x^3-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

19 tháng 11 2016

a, x8 + x7 + 1

=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)

= (x6 _ 1)(x2 + x) + (x2 + x +1)

= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)

=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)

=(x2 + x +1)((x - 1)( x2 + x) +1)

=(x2 + x +1)(x3 + 1)

b, x5 - x4-1

c, x7+x5 + 1

d,x8 + x4 +1

Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;

x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1

Các phần còn lại tương tự nhé!!!

19 tháng 11 2016

cảm ơn ạ

23 tháng 9 2019

Câu a, b, c :Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 8 - Học toán với OnlineMath

Câu d, e, f:  Câu hỏi của Trịnh Ánh My - Toán lớp 8 - Học toán với OnlineMath

1. Dùng phương pháp hệ số bất định : a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ; c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2. 2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1. Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) : 1. a) 6x2 – 11x +...
Đọc tiếp

1. Dùng phương pháp hệ số bất định :

a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ;

c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2.

2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1.

Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) :

1. a) 6x2 – 11x + 3 ; b) 2x2 + 3x – 27 ; c) x2 – 10x + 24 ;

d) 49x2 + 28x – 5 ; e) 2x2 – 5xy – 3y2.

2. a) x3 – 2x + 3 ; b) x3 + 7x – 6 ; c) x3 – 5x + 8x – 4 ;

d) x3 – 9x2 + 6x + 16 ; e) x3 + 9x2 + 6x – 16 ; g) x3 – x2 + x – 2 ;

h) x3 + 6x2 – x – 30 ; i) x3 – 7x – 6 (giải bằng nhiều cách).

3. a) 27x3 + 27x +18x + 4 ; b) 2x3 + x2 +5x + 3 ; c) (x2 – 3)2 + 16.

4. a) (x2 + x)2 - 2(x2 + x) - 15 ; b) x2 + 2xy + y2 - x - y - 12 ;

c) (x2 + x + 1)(x2 + x + 2) - 12 ;

5. a) (x + a)(x + 2a)(x + 3a)(x + 4a) + a4 ;

b) (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2 ;

c) 2(x4 + y4 + z4) - (x2 + y2 + z2)2 - 2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4.

6. (a + b + c)3 - 4(a3 + b3 + c3) - 12abc bằng cách đổi biến : đặt a + b = m và a - b = n.

7. a) 4x4 - 32x2 + 1 ; b) x6 + 27 ;

c) 3(x4 + x+2+ + 1) - (x2 + x + 1)2 ; d) (2x2 - 4)2 + 9.

8. a) 4x4 + 1 ; b) 4x4 + y4 ; c) x4 + 324.

9. a) x5 + x4 + 1 ; b) x5 + x + 1 ; c) x8 + x7 + 1 ;

d) x5 - x4 - 1 ; e) x7 + x5 + 1 ; g) x8 + x4 + 1.

10. a) a6 + a4 + a2b2 + b4 - b6 ; b) x3 + 3xy + y3 - 1.

Help me!!!!!!!!!!!!!!!!!

1

Bài 1: 

a: \(6x^2-11x+3\)

\(=6x^2-9x-2x+3\)

\(=3x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

b: \(2x^2+3x-27\)

\(=2x^2+9x-6x-27\)

\(=x\left(2x+9\right)-3\left(2x+9\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

c: \(x^2-10x+24\)

\(=x^2-4x-6x+24\)

\(=x\left(x-4\right)-6\left(x-4\right)\)

\(=\left(x-4\right)\left(x-6\right)\)

d: \(49x^2+28x-5\)

\(=49x^2+28x+4-9\)

\(=\left(7x+2\right)^2-9\)

\(=\left(7x-1\right)\left(7x+5\right)\)

e: \(2x^2-5xy-3y^2\)

\(=2x^2-6xy+xy-3y^2\)

\(=2x\left(x-3y\right)+y\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x+y\right)\)

18 tháng 7 2018

a)  \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)

c)  \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)

d)  \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)

e)  \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

2 tháng 11 2018

\(x^8+3x^4+4\)

\(=x^8+4x^4+4-x^4\)

\(=\left(x^4+2\right)^2-x^4\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

5 tháng 8 2017

a, \(x^8+x^7+1\)\(\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

\(b,x^5-x^4-1\)\(=\left(x^2-x+1\right)\left(x^3-x+1\right)\) 

\(c,x^7+x^5+1\) = \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\) 

\(d,x^8+x^4+1=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\) 

18 tháng 2 2018

a, x8+x7+1(x2+x+1)(x6−x4+x3−x+1)

b,x5−x4−1=(x2−x+1)(x3−x+1) 

c,x7+x5+1 = (x2+x+1)(x5−x4+x3−x+1) 

d,x8+x4+1=(x2−x+1)(x2+x+1)(x4−x2+1)