Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(A=x^3-x^2+2\)
\(=x^3+1-x^2+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^2-2x+2\right)\)
A là số dương
<=> \(\left(x+1\right)\left(x^2-2x+2\right)>0\)
Vì \(x^2-2x+2=\left(x-1\right)^2+1>0\)
=> \(\left(x+1\right)>0\)
<=> x > - 1
A là số nguyên => x nguyên
Vậy để A là số nguyên dương thì x là số nguyên và x > -1.
a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
=\(\frac{x-4}{x-2}\)
b. Để A >0 thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)
Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)
c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0,1,3,4\right\}\)
Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)
a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)
a/
ĐKXĐ: \(x\ne\left\{-1;0;1\right\}\)
b.
\(A=\dfrac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c.
\(A=2\Rightarrow\dfrac{x+1}{x-1}=2\)
\(\Rightarrow x+1=2x-2\)
\(\Rightarrow x=3\) (thỏa mãn)
d.
\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
\(A\) nguyên \(\Leftrightarrow\dfrac{2}{x-1}\) nguyên
\(\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=0\left(ktm\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy \(x=\left\{2;3\right\}\) thì A nguyên
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)
\(3-m=\frac{10}{x+2}\)
\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)
=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}
TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)
bài 3:
\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)
\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)
Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên
Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)
Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |
\(a,\)Với \(x\ne-3,x\ne2\) ta có :
\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}-\dfrac{1}{x-2}\)
\(=\dfrac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(b,\) \(A=-3\Leftrightarrow\dfrac{x-4}{x-2}=-3\)
\(\Leftrightarrow x-4=-3\left(x-2\right)\)
\(\Leftrightarrow x-4+3x-6=0\)
\(\Leftrightarrow4x=10\Rightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
Để A là số nguyên dương thì \(x-3\in\left\{1;-1;2;-2;3;6\right\}\)
hay \(x\in\left\{4;2;5;1;6;9\right\}\)