Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hôm sau mình giải cho mình phải đăng xuất đây bài dễ òm à.
Bài 1 :
\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)
\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)
\(\Leftrightarrow\)\(9x=16\)
\(\Leftrightarrow\)\(x=\frac{16}{9}\)
Vậy \(x=\frac{16}{9}\)
Chúc bạn học tốt ~
1)2x3+3x2+2x+3=0
=> (2x3+3x2)+(2x+3)=0
=> x2(2x+3)+(2x+3)=0
=> (2x+3)(x2+1)=0
=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)
Vậy x=-3/2
2)x2-3x-18=0
=> (x2+3x)-(6x+18)=0
=> x(x+3)-6(x+3)=0
=> (x+3)(x-6)=0
=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)
Vậy x=-3 hoặc x=6
3)Sai đề rồi bạn, 30 thành 30x mới đúng
x3-11x2+30x=0
=> x(x2-11x+30)=0
=> x[(x2-5x)-(6x-30)]=0
=> x[x(x-5)-6(x-5)]=0
=> x(x-5)(x-6)=0
=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)
Vậy x=0 hoặc x=5 hoặc x=6
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
\(a,x^2-16=0\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\\ Vậy...\)
\(b,\left(x-3\right)^2-x\left(x+3\right)=18\\ \Leftrightarrow x^2-6x+9-x^2-3x=18\\ \Leftrightarrow-9x+9=18\\ \Leftrightarrow-9x=9\Leftrightarrow x=-1\\ vậy...\)
Lời giải:
\(a)\)
$x^2 - 16 = 0$
$\to x^2 - 4^2 = 0$
$\to (x - 4)(x + 4) = 0$
\(\rightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy ...
\(b)\)
$(x - 3)^2 - x(x + 3) = 18$
\(\rightarrow x^2-6x+9-x^2-3x=18\\ \rightarrow-9x=18-9\\ \rightarrow-9x=9\\ \rightarrow x=\dfrac{9}{-9}=-1\)
Vậy ...
Ta có : \(\left(x+2\right)^3+\left(3-x\right)^3=-18\)
\(\Leftrightarrow\left(x+2+3-x\right)\left(x^2+4x+4-\left(x+2\right)\left(3-x\right)+x^2-6x+9\right)=-18\)
\(\Leftrightarrow x^2+4x+4+x^2-x-6+x^2-6x+9=-\dfrac{18}{5}\)
\(\Leftrightarrow3x^2-3x+\dfrac{53}{5}=0\)
\(\Leftrightarrow x^2-x+\dfrac{53}{15}=x^2-x+\dfrac{1}{4}+\dfrac{197}{60}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{197}{60}=0\)
Vậy phương trình vô nghiệm .
`a)(x+2)^3+(3-x)^3+18=0`
`<=>x^2+6x^2+12x+8+27-27x+9x^2-x^3+18=0`
`<=>15x^2-12x+57=0`
`<=>5x^2-4x+19=0`
`<=>4x^2-4x+1+x^2+18=0`
`<=>x^2+(2x-1)^2=-18` vô lý
=>pt vô nghiệm