K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

a: ĐKXĐ: x>=2/3

\(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)

=>\(x-2=9\sqrt{3x-2}+18\)

=>\(9\sqrt{3x-2}=x-2-18=x-20\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=20\\81\left(3x-2\right)=x^2-40x+400\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=20\\x^2-40x+400-243x+162=0\end{matrix}\right.\)

=>x>=20 và x^2-283x+562=0

=>x=281(nhận) hoặc x=2(loại)

b: ĐKXĐ: x>=2/5

\(\sqrt{5x-2}=9\)

=>5x-2=81

=>5x=83

=>x=83/5

c: ĐKXĐ: x>=-1; x<>8

\(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)

=>\(2x-16=5\sqrt{x+1}-15\)

=>\(\sqrt{25x+25}=2x-16+15=2x-1\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-4x+1=25x+25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-29x-24=0\end{matrix}\right.\)

=>x=8(nhận) hoặc x=-3/4(loại)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

a) ĐKXĐ: \(\left\{{}\begin{matrix}5-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x\ge-5\\x\ge3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x\ge3\end{matrix}\right.\Leftrightarrow3\le x\le5\)

Ta có: \(\sqrt{5-x}+\sqrt{x-3}=\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x-3}\right)^2=\left(\sqrt{2}\right)^2\)

\(\Leftrightarrow5-x+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}+x-3=2\)

\(\Leftrightarrow2+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=2\)

\(\Leftrightarrow2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=0\)

\(2\ne0\)

nên \(\sqrt{\left(5-x\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\left(5-x\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

Vậy: S={3;5}

b) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-4\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow x-2\ge0\)\(\Leftrightarrow x\ge2\)

Ta có: \(\sqrt{x^2-4}=2\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x+2}-2\cdot\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x+2=4\end{matrix}\right.\Leftrightarrow x=2\)

Vậy: S={2}

17 tháng 10 2023

b: Sửa đề: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)(1)

ĐKXĐ: \(x>=5\)

\(\left(1\right)\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

c: ĐKXĐ: \(\dfrac{3x-2}{x+1}>=0\)

=>\(\left[{}\begin{matrix}x>=\dfrac{2}{3}\\x< -1\end{matrix}\right.\)

\(\sqrt{\dfrac{3x-2}{x+1}}=3\)

=>\(\dfrac{3x-2}{x+1}=9\)

=>9(x+1)=3x-2

=>9x+9=3x-2

=>6x=-11

=>\(x=-\dfrac{11}{6}\left(nhận\right)\)

d: ĐKXĐ: \(\left\{{}\begin{matrix}5x-4>=0\\x+2>0\end{matrix}\right.\Leftrightarrow x>=\dfrac{4}{5}\)

\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)

=>\(\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

26 tháng 9 2021

\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)

\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)

\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)