Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a: ĐKXĐ: x>=2/3
\(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
=>\(x-2=9\sqrt{3x-2}+18\)
=>\(9\sqrt{3x-2}=x-2-18=x-20\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=20\\81\left(3x-2\right)=x^2-40x+400\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=20\\x^2-40x+400-243x+162=0\end{matrix}\right.\)
=>x>=20 và x^2-283x+562=0
=>x=281(nhận) hoặc x=2(loại)
b: ĐKXĐ: x>=2/5
\(\sqrt{5x-2}=9\)
=>5x-2=81
=>5x=83
=>x=83/5
c: ĐKXĐ: x>=-1; x<>8
\(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
=>\(2x-16=5\sqrt{x+1}-15\)
=>\(\sqrt{25x+25}=2x-16+15=2x-1\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-4x+1=25x+25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-29x-24=0\end{matrix}\right.\)
=>x=8(nhận) hoặc x=-3/4(loại)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a) ĐKXĐ: \(\left\{{}\begin{matrix}5-x\ge0\\x-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x\ge-5\\x\ge3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le5\\x\ge3\end{matrix}\right.\Leftrightarrow3\le x\le5\)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}=\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{5-x}+\sqrt{x-3}\right)^2=\left(\sqrt{2}\right)^2\)
\(\Leftrightarrow5-x+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}+x-3=2\)
\(\Leftrightarrow2+2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=2\)
\(\Leftrightarrow2\cdot\sqrt{\left(5-x\right)\cdot\left(x-3\right)}=0\)
mà \(2\ne0\)
nên \(\sqrt{\left(5-x\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\left(5-x\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
Vậy: S={3;5}
b) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-4\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow x-2\ge0\)\(\Leftrightarrow x\ge2\)
Ta có: \(\sqrt{x^2-4}=2\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x+2}-2\cdot\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x+2=4\end{matrix}\right.\Leftrightarrow x=2\)
Vậy: S={2}
b: Sửa đề: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)(1)
ĐKXĐ: \(x>=5\)
\(\left(1\right)\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
c: ĐKXĐ: \(\dfrac{3x-2}{x+1}>=0\)
=>\(\left[{}\begin{matrix}x>=\dfrac{2}{3}\\x< -1\end{matrix}\right.\)
\(\sqrt{\dfrac{3x-2}{x+1}}=3\)
=>\(\dfrac{3x-2}{x+1}=9\)
=>9(x+1)=3x-2
=>9x+9=3x-2
=>6x=-11
=>\(x=-\dfrac{11}{6}\left(nhận\right)\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}5x-4>=0\\x+2>0\end{matrix}\right.\Leftrightarrow x>=\dfrac{4}{5}\)
\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)
=>\(\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
\(a,PT\Leftrightarrow x\sqrt{3}=x+2\\ \Leftrightarrow3x^2=x^2+4x+4\\ \Leftrightarrow2x^2-4x-4=0\Leftrightarrow x^2-2x-2=0\\ \Delta=4+8=12\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-2\sqrt{3}}{2}=1-\sqrt{3}\\x=\dfrac{2+2\sqrt{3}}{2}=1+\sqrt{3}\end{matrix}\right.\)
\(b,ĐK:x\ge\dfrac{2}{3}\\ PT\Leftrightarrow3x-2=7-4\sqrt{3}\\ \Leftrightarrow3x=9-4\sqrt{3}\\ \Leftrightarrow x=\dfrac{9-4\sqrt{3}}{3}\left(tm\right)\)
\(c,ĐK:x\ge-1\\ PT\Leftrightarrow\left(x+1-4\sqrt{x+1}+4\right)+\left(x^2-6x+9\right)=0\\ \Leftrightarrow\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x=3\end{matrix}\right.\Leftrightarrow x=3\left(tm\right)\)