
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(A=4.\left(3^2+1\right).\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\frac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=\frac{3^{32}-1}{2}< 3^{32}-1=B\)
Vậy \(A< B\)

3: Đặt x+3=a
Ta có: (x+3)(x+4)(x+5)=x
⇔a(a+1)(a+2)=a-3
⇔\(a^3+3a^2+2a-a+3=0\)
\(\Leftrightarrow a^3+3a^2+a+3=0\)
\(\Leftrightarrow a^2\left(a+3\right)+\left(a+3\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(a^2+1\right)=0\)(1)
Ta có: \(a^2\ge0\forall a\)
\(\Rightarrow a^2+1\ge1>0\forall a\)(2)
Từ (1) và (2) suy ra a+3=0
hay \(x+6=0\)
⇔x=-6
Vậy: x=-6

a) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)
⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)
⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x
⇔ 10x ≥ 2 ⇔ x ≥ 1/5
Tập nghiệm: S = {x | x ≥ 1/5}
b) (x – 3)2 + 4(2 – x) > x(x + 7)
⇔ x2 – 6x + 9 + 8 – 4x > x2 + 7x
⇔ –17x > –17
⇔ x < -17/-17
⇔ x < 1
Tập nghiệm: S = {x | x < 1}.
Ta có: \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-32\)
\(\Leftrightarrow A=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-32\)
\(\Leftrightarrow A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-32\)
Đặt \(a=x^2+5x+4\) \(\Rightarrow\)\(a+2=x^2+5x+6\)
Ta lại có: \(A=a.\left(a+2\right)-32\)
\(\Leftrightarrow A=a^2+2a-32\)
\(\Leftrightarrow A=a^2+2a-32\)
\(\Leftrightarrow A=\left(a^2+2a+1\right)-33\)
\(\Leftrightarrow A=\left(a+1\right)^2-\left(\sqrt{33}\right)^2\)
\(\Leftrightarrow A=\left(a+1-\sqrt{33}\right)\left(a+1+\sqrt{33}\right)\)
\(\Leftrightarrow A=\left(x^2+5x+5-\sqrt{33}\right)\left(x^2+5x+5+\sqrt{33}\right)\)
Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) - 32
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 32
= (x2 + 5x + 4)(x2 + 5x + 6) - 32
= (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 32
= (x2 + 5x + 5)2 - 1 - 32
= (x2 + 5x + 5)2 - 33 \(\ge-33\)
Dấu "=" xảy ra <=> x2 + 5x + 5 = 0
=> (x2 + 5x + 25/4) = 5/4
=> (x + 5/2)2 = 5/4
=> \(\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}}-\frac{5}{2}\\x=-\sqrt{\frac{5}{4}}-\frac{5}{2}\end{cases}}\)
Vậy Min A = -33 <=> \(x\in\left\{\sqrt{\frac{5}{4}}-\frac{5}{2};-\sqrt{\frac{5}{4}}-\frac{5}{2}\right\}\)