Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\left(x+1\right)\left(x+3\right)=\left(0,5x+2\right)\left(2x+1\right)\)
\(x^2+4x+3=x^2+4,5x+2\)
\(x^2-x^2+4x-4,5x-2+3=0\)
\(1-0,5x=0\)
\(x=2\)
a, (x-1).(y+2)=5=1.5=(-1).(-5)
=> x-1=1
y+5=5
Hoặc x-1=5
y+5=1
Hoặc x-1=-1
y+5=-5
Hoặc x-1=-5
y+5=-1
=> x=1+1=2
y=5-5=0
Hoặc x=5+1=6
y=1-5=-4
Hoặc x=-1+1=0
y=-5-5=-10
Hoặc x=-5+1=-4
y=-1-5=-6
b, x.(y-3)=12=1.12=2.6=3.4=(-1).(-12)=(-2).(-6)=(-3).(-4)
=> Bài này cũng tương tự như bài trên chỉ khác bài trên có 4 trường hợp x và y còn bài này có 6 trường hợp x và y, bạn làm dc tiếp chứ
a)(x-1).(y+2)=5
x-1=5 hoac y+2=5
x=6 y=3
b)x(y-3)=12
=>x=12 hoac y-3=12
y=15
Cho mk ? ban dang len cho vui chu,dung khong!
\(\frac{-2}{x}=\frac{-x}{\frac{8}{25}}\)
=>\(\left(-x\right)x=\left(-2\right).\frac{8}{25}\)
=>\(-x^2=-\frac{16}{25}\)
=>\(x^2=\frac{16}{25}\)
=>\(x=-\frac{4}{5}\) hoặc \(x=\frac{4}{5}\)
\(-\frac{2}{x}=-\frac{x}{\frac{8}{25}}\Rightarrow-2.-\frac{8}{25}=x^2\Rightarrow\frac{16}{25}=x^2\Rightarrow x=\frac{\sqrt{16}}{\sqrt{25}}=\frac{4}{5}\)
a) \(|2x-2|+|3-3x|=125\left(1\right)\)
Ta có:
\(2x-2=0\Leftrightarrow x=1\)
\(3-3x=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
Với \(x< 1\Rightarrow\hept{\begin{cases}2x-2< 0\\3-3x>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-2|=2-2x\\|3-3x|=3-3x\end{cases}}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(\left(2-2x\right)+\left(3-3x\right)=125\)
\(2-2x+3-3x=125\)
\(-5x+5=125\)
\(-5x=120\)
\(x=-24\)( chọn )
Với \(x\ge1\Rightarrow\hept{\begin{cases}2x-2>0\\3-3x< 0\end{cases}}\Rightarrow\hept{\begin{cases}|2x-2|=2x-2\\|3-3x|=3x-3\end{cases}\left(3\right)}\)
Thay (3) vào (1) ta được :
\(\left(2x-2\right)+\left(3x-3\right)=125\)
\(2x-2+3x-3=125\)
\(5x-5=125\)
\(5x=130\)
\(x=26\)9 (CHọn )
Vậy \(x\in\left\{-24;26\right\}\)
b) \(|x-2018|+|x-2019|=1\left(1\right)\)
Ta có: \(x-2018=0\Leftrightarrow x=2018\)
\(x-2019=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
+) Với \(x< 2018\Rightarrow\hept{\begin{cases}x-2018< 0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=2018-x\\|x-2019|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(2018-x\right)+\left(2019-x\right)=1\)
\(2018-x+2019-x=1\)
\(4037-2x=1\)
\(2x=4036\)
\(x=2018\)( Loại )
+) Với \(2018\le x< 2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(x-2018\right)+\left(2019-x\right)=1\)
\(x-2018+2019-x=1\)
\(1=1\)( luôn đúng )
+) Với \(x\ge2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019>0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=x-2019\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(x-2018\right)+\left(x-2019\right)=1\)
\(2x-4037=1\)
\(x=2019\)( Chọn )
Vậy \(2018\le x\le2019\)
\(x-2\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(x=\sqrt{x}\)
\(\Rightarrow x-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)