Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 + x2 - 27x - 9
= (x4 - 27x) + x2 - 9
= x(x3 - 27) + (x - 3)(x + 3)
= x(x - 3)(x2 + 3x + 9) + (x - 3)(x + 3)
= (x - 3)(x3 + 3x2 + 9x + x + 3)
= (x - 3)(x3 + 3x2 + 10x + 3)
b) x2 - xy - x + y
= x(x - y) - (x - y)
= (x - 1)(x - y)
c) xy + 4 - x2 + 2y
= (xy + 2y) - (x2 - 4)
= y(x + 2) - (x - 2)(x + 2)
= (x + 2)(y - x + 2)
d) xy + y - 2(x + 1)
= y(x + 1) - 2(x + 1)
= (y - 2)(x + 1)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả
\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:
Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)
\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)
a)\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
b)\(x^4-x^3-x^2+1=\left(x^4-x^3\right)-\left(x^2-1\right)=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x^3-x-1\right)\)
c)\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
a) x3 + 2x2 + x
= x3 + x2 + x2 + x
= x2 ( x + 1 ) + x ( x + 1 )
= ( x2 + x ) ( x + 1 )
a) \(\dfrac{x+6}{x^2-4}+\dfrac{1}{x+2}=\dfrac{x+6}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x+6+x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{2x+4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b) \(x^2+xy-5\left(x+y\right)=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\)