Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Ta gọi A là số cần tìm
A : 2,3,4,5 và 6 dư 1
Suy ra A+1 chia hết cho 2,3,4,5 và 6
Suy ra A+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
6=2x3
Suy ra BCNN(2,3,4,5,60=22 x3=12
Vậy BC(2,3,4,5,6)=B(2,3,4,5,6)=12
Suy ra A+1 thuộc 1,12,24,36
Ta có bảng sau:
A+1 | 1 | 12 | 24 | 36 |
A | 0 | 11 | 23 | 35 |
VÌ A chia hết cho 7 nên A sẽ bằng 35
Giải
Gọi số tự nhiên đó là :a
Vì số đó chia cho 2,cho3,cho4,cho5,cho6 đều dư 1 suy ra a-1 = BC<2,3,4,5,6> mà a nhỏ nhất suy ra a=BCNN<2,3,4,5,6>
Ta có: 2=2
3=3
2=2.2
5=5
6=2.3
suy ra BCNN<2,3,4,5,6>=2.2.3.5=60
suy ra a-1= BC<2,3,4,5,6>=B<60>=(0,60,120,180,240,300,...)
suy ra a=(1,61,121,181,241,301,...)
Mặt khác a chia hết cho 7suy ra=241
Vậy số tự nhiên nhỏ nhất cần tìm là:241
Lời giải:
Gọi số tự nhiên thỏa mãn đề là $n$. Vì số đó chia $3,4,5,6$ đều dư $2$ nên số đó sẽ có dạng
$n=BCNN(3,4,5,6).k+2$ với $k$ tự nhiên
$n=60k+2$
$n$ chia $7$ dư $3$ nghĩa là $n-3\vdots 7$
$\Leftrightarrow 60k-1\vdots 7$
$\Leftrightarrow 63k-(60k-1)\vdots 7$
$\Leftrightarrow 3k+1\vdots 7$
$\Leftrightarrow 3k-6\vdots 7$
$\Leftrightarrow k-2\vdots 7$ nên $k=7t+2$ với $t$ tự nhiên.
Thay vô $n$ thì $n=60k+2=60(7t+2)+2=420t+122$
Vì $t\geq 0$ nên $n\geq 122$
Vậy số tự nhiên nhỏ nhất thỏa đề là $122$
2, TA có:
x + y + xy = 40
=> x(y + 1) + y + 1 = 41
=> (x + 1)(y + 1) = 41
=> x + 1 thuộc Ư(41) = {1; 41}
Xét từng trường hợp rồi thay vào tìm y
Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...
gọi STN đó là a. Ta có:
a-2 chia hết cho 3;4;5;6
a-2 thuộc BC(3,4,5,6)
BCNN(3,4,5,6)=60
a={62;122;...}
vì a nhỏ nhất , a chia 7 dư 3 nên a=122
[1-2]+[3-4]+...+[49-50]=-25
b;số đó là 61