Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0

Bài 1 )
a)\(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{2}\)
b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\left(\sqrt{3}+1\right)-\left|1-\sqrt{3}\right|=\left(\sqrt{3}+1\right)-\sqrt{3}+1=2\)
Bài 2)
a)\(\sqrt{36x^2-12x+1}=5\)
\(\Leftrightarrow36x^2-12x+1=25\)
\(\Leftrightarrow36x^2-12x+1=25\)
\(\Leftrightarrow\left(6x\right)^2-2.6x+1=25\)
\(\Leftrightarrow\left(6x-1\right)^2=25\)
\(\Rightarrow6x-1=5\)
\(\Leftrightarrow6x=6\)
\(\Rightarrow x=1\)
b)\(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
\(\Leftrightarrow\sqrt{x-5}-2\sqrt{4.\left(x-5\right)}-\frac{1}{3}\sqrt{9.\left(x-5\right)}=12\)
\(\Leftrightarrow\sqrt{x-5}-4\sqrt{\left(x-5\right)}-\sqrt{\left(x-5\right)}=12\)
\(\Leftrightarrow-4\sqrt{\left(x-5\right)}=12\)
\(\Rightarrow\)ko tồn tại giá trị nào của x trong biểu thức này
P/s tham khảo nha
1a) \(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)
=\(3\sqrt{\frac{3}{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
=\(3\frac{\sqrt{3}}{\sqrt{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)
=\(3\frac{\sqrt{3}}{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)
=\(\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)\)
=\(\sqrt{3}-\sqrt{3}+\sqrt{2}\)=\(\sqrt{2}\)
b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
=\(|\sqrt{3}+1|-|1-\sqrt{3}|\)
=\(\sqrt{3}+1-\left(-\left(1-\sqrt{3}\right)\right)\)
=\(\sqrt{3}+1+1-\sqrt{3}\)
=\(1+1\)=\(2\)
2) a) \(\sqrt{36x^2-12x+1}=5\)
<=>\(\sqrt{\left(6x\right)^2-2.6x.1+1^2}=5\)
<=>\(\sqrt{\left(6x-1\right)^2}=5\)
<=>\(|6x-1|=5\)
Nếu \(6x-1>=0\)=> \(6x>=1\)=>\(x>=\frac{1}{6}\)
Nên \(|6x-1|=6x-1\)
Ta có \(|6x-1|=5\)
<=> \(6x-1=5\)
<=> \(6x=6\)
<=> \(x=1\)(thỏa)
Nếu \(6x-1< 0\)=> \(6x< 1\)=>\(x< \frac{1}{6}\)
Nên \(|6x-1|=-\left(6x-1\right)=1-6x\)
Ta có \(|6x-1|=5\)
<=> \(1-6x=5\)
<=> \(-6x=4\)
<=> \(x=\frac{4}{-6}=\frac{-2}{3}\)(thỏa)
Vậy \(x=1\)và \(x=\frac{-2}{3}\)
b) \(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
<=>\(\sqrt{x-5}-2\sqrt{4\left(x-5\right)}-\frac{1}{3}\sqrt{9\left(x-5\right)}=12\)
<=>\(\sqrt{x-5}-2.2\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=12\)
<=>\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\)
<=>\(-4\sqrt{x-5}=12\)
<=> \(\sqrt{x-5}=-3\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(-3\right)^2\)
<=>\(x-5=9\)
<=>\(x=14\)
Vậy x=14
Kết bạn với mình nhá

bài 1:
a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7
\)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn
1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)
= \(|2-\sqrt{3}|+|1+\sqrt{3}|\)
= \(2-\sqrt{3}+1+\sqrt{3}\)
= \(2+1\)= \(3\)
b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)
= \(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)
= \(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)
= \(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)
= \(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)
2 a) \(\sqrt{x^2-2x+1}=7\)
<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)
<=> \(\sqrt{\left(x-1\right)^2}=7\)
<=> \(|x-1|=7\)
Nếu \(x-1>=0\)=>\(x>=1\)
=> \(|x-1|=x-1\)
\(x-1=7\)<=>\(x=8\)(thỏa)
Nếu \(x-1< 0\)=>\(x< 1\)
=> \(|x-1|=-\left(x-1\right)=1-x\)
\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)
Vậy x=8 hoặc x=-6
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)
<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\sqrt{x-5}=\sqrt{1-x}\)
ĐK \(x-5>=0\)<=> \(x=5\)
\(1-x\)<=> \(-x=-1\)<=> \(x=1\)
Ta có \(\sqrt{x-5}=\sqrt{1-x}\)
<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)
<=> \(x-5=1-x\)
<=> \(x-x=1+5\)
<=> \(0x=6\)(vô nghiệm)
Vậy phương trình vô nghiệm
Kết bạn với mình nha :)
a) Ta thấy \(\left(a+\frac{1}{a}\right)^3=a^3+3a^2.\frac{1}{a}+3a.\frac{1}{a^2}+\frac{1}{a^3}=a^3+\frac{1}{a^3}+2\left(a+\frac{1}{a}\right)^3\)
Vậy thì \(\left(a+\frac{1}{a}\right)^3-3\left(a+\frac{1}{a}\right)=a^3+\frac{1}{a^3}\)
Từ đó suy ra với \(x=\sqrt[3]{2-\sqrt{3}}+\frac{1}{\sqrt[3]{2-\sqrt{3}}}\) thì
\(x^3-3x=\left(\sqrt[3]{2-\sqrt{3}}\right)^3+\left(\frac{1}{\sqrt[3]{2-\sqrt{3}}}\right)^3=2-\sqrt{3}+\frac{1}{2-\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}+1}{2-\sqrt{3}}=\frac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
Vậy thì \(B=\left(4-3\right)^{2015}=1^{2015}=1.\)
b) \(\left(x^2-4x\right)^2+9x^2-36x+20=0\)
\(\Leftrightarrow\left(x^2-4x\right)^2+9\left(x^2-4x\right)+20=0\)
Đặt \(x^2-4x=t,\) phương trình trở thành \(t^2+9t+20=0\Rightarrow\orbr{\begin{cases}t=-4\\t=-5\end{cases}}\)
Với t = -4, ta có \(x^2-4x=-4\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Với t = -5, ta có \(x^2-4x=-5\Rightarrow x^2-4x+5=0\Rightarrow\left(x-2\right)^2+1=0\) (Vô nghiệm)
Vậy phương trình có nghiệm x = 2.
a) Có cô Huyền giải rồi
b)Ta có: \(\left(x^2-4x\right)^2+9x^2-36x+20=0\)
\(\Leftrightarrow\left(x.x-4x\right)^2+\left(9x.9x\right)-36x+20=0\)
\(\Leftrightarrow\left(x.x-4x\right)^2+\left(81x\right)^2-36x+20=0\) (1)
Từ (1) , Ta tìm delta (kí hiệu: \(\Delta\))
Sau khi tìm delta xong, sẽ có 3 trường hợp xảy ra
_Nếu \(\Delta>0\)thì x sẽ có 2 nghiệm phân biệt
_ Nếu \(\Delta=0\)thì phương trình gồm 1 nghiệm
_ Nếu \(\Delta< 0\)thì phương trình vô nghiệm
Tùy thuộc vào mỗi bài sẽ xảy ra 1 trong 3 trường hợp trên. Bạn chọn 1 trong 3 trường hợp để giải bài đó (với điều kiện phải tìm được delta). Bài này mình chỉ hướng dẫn bạn vậy thôi! Vì mình mới lớp 6! Chỉ có thể hướng dẫn làm bài!