Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]
M = a2 - ab + b2 + 3ab.(a2 + b2 + 2ab)
M = a2 - ab + b2 + 3ab.(a + b)2
M = a2 - ab + b2 + 3ab
M = a2 + b2 + 2ab
M = (a + b)2
M = 1
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
áp dụng đl ta-lét vào tam giác có:
\(\dfrac{BC}{CA}=\dfrac{DE}{EA}=\dfrac{BC}{5}=\dfrac{3}{8}=>BC=\dfrac{3}{8}.5=\dfrac{15}{8}=1,875\)
X = BC + CA = 1,875 + 5 = 6,875
Câu 1:
a) \((a+b)^3-3ab(a+b)=a^3+3a^2b+3ab^2+b^3-3ab(a+b)\)
\(=a^3+b^3+3ab(a+b)-3ab(a+b)\)
\(=a^3+b^3\)
Áp dụng: \(a^3+b^3=(a+b)^3-3ab(a+b)=(-5)^3-3.6(-5)=-35\)
b) \((a-b)^3+3ab(a-b)\)
\(=a^3-3a^2b+3ab^2-b^3+3ab(a-b)\)
\(=a^3-b^3-3ab(a-b)+3ab(a-b)\)
\(=a^3-b^3\)
Áp dụng:
\(a^3-b^3=(a-b)^3+3ab(a-b)=(-5)^3+3(-6)(-5)=-35\)
Câu 2:
a) Vì \(x^2\geq 0, \forall x\Rightarrow A=4x^2+3\geq 4.0+3=3\)
Vậy GTNN của $A$ là $3$ tại $x^2=0$ hay $x=0$
b)
\(B=2x^2+2x+2xy+y^2+3=(x^2+2x+1)+(x^2+2xy+y^2)+2\)
\(=(x+1)^2+(x+y)^2+2\)
Vì \((x+1)^2\geq 0; (x+y)^2\geq 0, \forall x,y\in\mathbb{R}\)
\(\Rightarrow B\geq 0+0+2=2\)
Vậy GTNN của $B$ là $2$ tại \(\left\{\begin{matrix} (x+1)^2=0\\ (x+y)^2=0\end{matrix}\right.\Leftrightarrow x=-1; y=1\)
Bạn chú thích hơi quá lố :)
Ta có :( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) \(=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\)
Mà x^2=y^2 + z^2 nên ( 5x - 3y + 4z ) . ( 5x - 3y - 4z )\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
Học tốt !
a)\(a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab=a^2-ab+b^2+3ab=a^2+2ab+b^2=\left(a+b\right)^2=1^2=1\)
b) \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow0=0\)(đúng do \(a+b+c=0\))
Vậy nếu a+b+c=0 thì \(a^3+b^3+c^3=3abc\)