K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2023

a) \(\left(4^4.24.16^2\right):\left(4^3.8^3\right)=\left(2^8.2^3.3.2^8\right):\left(2^6.2^9\right)=\left(2^{19}.3\right):\left(2^{15}\right)=2^4.3=48\)

b) Quy luật của dãy S là 3k+1 (kϵN)

⇒ 3k+1=2023 ⇒ 3k=2022 ⇒ k=674

⇒ 2023 là phần tử của S

13 tháng 7 2023

c) \(ab=10a+b\)

\(ba=10b+a\)

\(\Rightarrow ab-ba=9a-9b=9\left(a-b\right)\)

mà \(9⋮9\)

\(\Rightarrow ab-ba⋮9\left(a< b\right)\)

11 tháng 5 2017

S=1-1/4+1-1/9+...+1-1/x2

S=(1+1+1+...+1)-(1/4+1/9+...+1/x2)

Có (1/4+1/9+...+1/x2)<1/(1.2)+1/(2.3)+...+1/(x-1)x=1-1/x<1

=> (1/4+1/9+...+1/x2) ko là số nguyên

=>S ko là số nguyên

9 tháng 9 2020

a) Ta có : S = 4 + 42 + 43 + ... + 490

=> 4S = 42 + 43 + 44 + ... + 491

=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)

=> 3S = 491 - 4

=> S = \(\frac{4^{91}-4}{3}\)

b) Khi đó 3S + 4 = 4x + 10

<=> 491 - 4 + 4 = 4x + 10

=> 4x + 10  491

=> x + 10 = 91

=> x = 81

Vậy x = 81

9 tháng 9 2020

S = 4 + 42 + 43 + ... + 490

Chứng minh chia hết cho 5

S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )

    = 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )

    = 4.5 + 43.5 + ... + 489.5

    = 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )

Chứng minh chia hết cho 21

S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )

= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )

= 4.21 + 44.21 + ... + 488.21

= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )

Tính S

S = 4 + 42 + 43 + ... + 490

4S = 4( 4 + 42 + 43 + ... + 490 )

     = 42 + 43 + 44 + ... + 491

4S - S = 3S

= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )

= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490 

= 491 - 4

\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)

Tìm x

3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )

<=> 491 - 4 + 4 = 4x+10

<=> 491 = 4x+10

<=> 91 = x + 10

<=> x = 81

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +bBài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,yBài 3: Cho đa thức f(x) = x2 +4x -5a) Số -5 có phải nghiệm của đa thức f(x) ko?b) Viết tập hợp S tất cả các nghiệm của f(x)Bài 4: Thu gọn rồi tìm...
Đọc tiếp

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>

Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +b

Bài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,y

Bài 3: Cho đa thức f(x) = x2 +4x -5

a) Số -5 có phải nghiệm của đa thức f(x) ko?

b) Viết tập hợp S tất cả các nghiệm của f(x)

Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:

a) f(x) = x(1-2x) + (2x -x +4)

b) g(x)= x(x-5) -x(x+2) +7x

c) h(x) = x(x-1) +1

Bài 5: Cho 

f(x)=x-101x7+101x6-101x5+...+101x2 -101x +25 . Tính f(100)

Bài 6: Cho f(x) = ax+ bx +c . Biết 7a +b = 0

Hỏi f(10) , f(-3) có thể là số âm ko?

Bài 7: Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0

Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8

Bài 8: Cho f(x)= ax+ 4x(x -1) +8 

g(x) = x3 -4x(bx +1) +c -3

trong đó a,b,c là hăngf . Xác định a,b,c để f(x) = g(x)

Bài 9: Cho f(x) = 2x+ ax +4 ( a là hằng)

g(x)= x2 -5x - b ( b là hằng)

Tìm các hệ số a,b sao cho f(1)=g(2) ;f(-1)= f(5)

 

 

 

1

rtyuiytre

1 tháng 11 2015

1/ 106=(5x2)6=56x26=56x64=>106-57=56x(64-5)=56x59. Vậy ta có điều phải chứng minh

15 tháng 12 2016

Bài 1

a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{99.100}\)

= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{100}\)

= 1 - \(\frac{1}{100}\)

= \(\frac{99}{100}\)

Còn những bài kia em không biết làm vì em mới học lớp 6.

Chúc anh/chị học tốt!

14 tháng 12 2016

Bài 1

a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Bài 3:

b)\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Ta thấy: \(\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\)

\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

\(\Rightarrow\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-27=0\\3y+10=0\end{cases}\)\(\Rightarrow\begin{cases}2x=27\\3y=-10\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}\)

NHÂN CÁC ĐA THỨC 1. Tính giá trị: B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7 2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào? 3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2 CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ 1. Rút gọn các biểu thức sau: a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12 b. B = 3(22 + 1) (24 + 1) ... (264...
Đọc tiếp

NHÂN CÁC ĐA THỨC

1. Tính giá trị:

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7

2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào?

3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

Bài tập toán nâng cao lớp 8

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

help me khocroi
4
29 tháng 10 2017

1. Phân tích đa thức thành nhân tử:

a) \(x^2-x-6\)

\(=x^2-3x+2x-6\)

\(=x\left(x-3\right)+2\left(x-3\right)\)

\(=\left(x-3\right)\left(x+2\right)\)

b) \(x^4+4x^2-5\)

\(=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

c) \(x^3-19x-30\)

\(=x^3+5x^2+6x-5x^2-25x-30\)

\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)

\(=\left(x^2+5x+6\right)\left(x-5\right)\)

\(=\left(x^2+2x+3x+6\right)\left(x-5\right)\)

\(=\left[x\left(x+2\right)+3\left(x+2\right)\right]\left(x-5\right)\)

\(=\left(x+2\right)\left(x+3\right)\left(x-5\right)\)

29 tháng 10 2017

3. Phân tích thành nhân tử:

c) \(81x^4+4\)

\(=\left(9x^2\right)^2+2.9x^2.2+2^2-36x^2\)

\(=\left(9x^2+2\right)^2-\left(6x\right)^2\)

\(=\left(9x^2+2-6x\right)\left(9x^2+2+6x\right)\)

d) \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right) \left(x^3-x^2+1\right)\)

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.