\(y^2\)+\(2^x\)-1=\(\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

c)  \(P=\frac{x^2-2x+2012}{x^2}\)  \(\left(x\ne0\right)\)  và \(\left(x\ge1\right)\)

Ta có:  \(P=\frac{x^2-2x+2012}{x^2}\)  \(\Leftrightarrow\)  \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}\)

\(\Leftrightarrow\)  \(P=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\)  \(\Leftrightarrow\)  \(P=\frac{\left(x-2012\right)^2}{2012x^2}+\frac{2011}{2012}\ge\frac{2011}{2012}\)  với mọi  \(x\ge1\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\left(x-2012\right)^2=0\)

                              \(\Leftrightarrow\)  \(x-2012=0\)

                              \(\Leftrightarrow\)  \(x=2012\)

Vậy, \(P_{min}=\frac{2011}{2012}\)  khi  \(x=2012\)

 

9 tháng 2 2016

b) Từ giả thiết \(a^2+b^2+c^2=\left(a+b+c\right)^2\) , ta suy ra  \(ab+bc+ca=0\)

nên  \(a^2+2bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,  \(b^2+2ca=\left(b-a\right)\left(b-c\right)\)  \(;\) \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Do đó,   \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

1 tháng 3 2020

b) \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{5x+2}{4-x^2}\left(x\ne\pm2\right)\)

\(=\frac{4}{x+2}+\frac{3}{x-2}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+3x+6-5x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}\)

2 tháng 3 2020

f) \(x^2+1-\frac{x^4-3x^2+2}{x^2-1}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\frac{\left(x^2-2\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=x^2+1-\left(x^2-2\right)\)

\(=x^2+1-x^2+2\)

\(=3\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2

Bài 1:

a) Ta có: \(\left(\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right):\frac{16x}{4x^2+4xy+y^2}\)

\(=\left(\frac{\left(2x+y\right)^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}+\frac{2\cdot\left(2x+y\right)\left(2x-y\right)}{\left(2x+y\right)^2\cdot\left(2x-y\right)^2}+\frac{\left(2x-y\right)^2}{\left(2x+y\right)^2\cdot\left(2x-y\right)^2}\right)\cdot\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(2x+y+2x-y\right)^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}\cdot\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(4x\right)^2}{\left(2x-y\right)^2}\cdot\frac{1}{16x}\)

\(=\frac{16x^2}{16x\cdot\left(2x-y\right)^2}\)

\(=\frac{x}{\left(2x-y\right)^2}\)

b) Ta có: \(\frac{3}{3x+3}+\frac{10}{5-5x}+\frac{5x-1}{x^2-1}\)

\(=\frac{1}{x+1}-\frac{2}{x-1}+\frac{5x-1}{x^2-1}\)

\(=\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{5x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x-1-2\left(x+1\right)+5x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x-1-2x-2+5x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{4x-4}{\left(x-1\right)\left(x+1\right)}=\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{4}{x+1}\)

c) Ta có: \(A=\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)-\left(x^2-x\right)\)

\(=\frac{\left(x^2\right)^2-\left(x^2-2x+1\right)}{x^2+x-1}-x^2+x\)

\(=\frac{\left(x^2\right)^2-\left(x-1\right)^2}{x^2+x-1}-x^2+x\)

\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{x^2+x-1}-x^2+x\)

\(=x^2-x+1-x^2+x\)

=1

Bài 1.Cho \(x+y+z=0\)Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)CMR: \(xy+yz+zx=0\)Bài 3. Cho \(3x-y=2z\)                \(2x+y=7z\)Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)Bài 5....
Đọc tiếp

Bài 1.Cho \(x+y+z=0\)

Tính \(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

Bài 2. Cho \(a+b+c=1;a^2+b^2+c^2=1;\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

CMR: \(xy+yz+zx=0\)

Bài 3. Cho \(3x-y=2z\)

                \(2x+y=7z\)

Tính \(S=\frac{x^2-2xy}{x^2+y^2}\)với \(x,y\ne0\)

Bài 4. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(E=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Bài 5. Cho \(abc\ne0\)thỏa mãn: \(2ab+6bc+2ac=0\)

Tính \(A=\frac{\left(a+2b\right)\left(2b+3c\right)\left(3c+a\right)}{6abc}\)

Bài 6. Cho \(a,b,c\ne0\)thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Tính \(Y=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-c^2a^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}\)

Bài 7. Cho \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)

Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

6
15 tháng 2 2019

làm nổi à bạn. 

15 tháng 2 2019

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2