K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

11 tháng 10 2023

loading...  =>y=2x+9

11 tháng 10 2023

e ơi, mình trình bày giấy thì viết rõ ràng xíu để mng đọc dc nha 

15 tháng 4 2019

ai giải bài này giùm với 

a: Thay x=-2 và y=-2 vào (d1), ta đc:

-2(2m+1)+m-3=-2

=>-4m-2+m-3=-2

=>-3m-5=-2

=>-3m=3

=>m=-1

b: Tọa độ giao của (d2) với trục hoành là:

y=0 và (2a+1)x+4a-3=0

=>x=-4a+3/2a+1

Để x nguyên thì -4a-2+5 chia hết cho 2a+1

=>\(2a+1\in\left\{1;-1;5;-5\right\}\)

=>\(a\in\left\{0;-1;2;-3\right\}\)

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất

20 tháng 12 2022

a: Để (d)//Ox thì m-1=0

=>m=1

b: Thay x=-1 và y=1 vào (d), ta được:

-m+1+m=1

=>1=1(luôn đúng)

c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:

\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)

=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)

=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)

=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)

=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)