
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.
Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:
\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)
b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2 (1)
+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH
\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)

a) 2/x+7=x+7/32
<=> (x+7)^2=64
=> x+7=8 hoặc x+7=-8
=> x=-1 hoặc x=-15
b) - (x+5)^2= (x-2).(x+8)
<=> -(x+5)^2=x^2+8x-2x-16
<=> - (x+5)^2 =(x-4)^2
+> Không có giá trị x thỏa mãn
a. ĐK: x\(\ne\)-7
2.32=(x+7)2
<=> 64=x2+ 14x+ 49
<=>x2+ 14x- 15=0
<=>x2+ 15x- x- 15=0
<=>(x-1)(x+15)=0
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-15\end{cases}}\)
b, ĐK: x\(\ne\)-5;-8
(x-2)(x+8)=(x-5)(x+5)
<=>x2+ 6x- 16=x2- 25
<=>6x+9=0
\(\Leftrightarrow x=-\frac{3}{2}\)

Cái dấu chéo / là gì vậy bạn ( có phải la dấu GTTĐ | ko)

1 +1 = 3, 3 voi 3 la 4, 4 voi 1 la ba, 3 ngon tay that deu
a. | x - 1/7 | + 3/7 = 0
<=> | x - 1/7 | = - 3/7
Mà \(\left|x-\frac{1}{7}\right|\ge0\forall x\)
=> Không có x tm đề bài
b. | x + 1/4 | - 3/4 = 5%
<=> | x + 1/4 | = 4/5
<=> \(\orbr{\begin{cases}x+\frac{1}{4}=\frac{4}{5}\\x+\frac{1}{4}=-\frac{4}{5}\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{11}{20}\\x=-\frac{21}{20}\end{cases}}\)
c. | - x + 2/5 | + 1/2 = 3,5
<=> | - x + 2/5 | = 3
<=> \(\orbr{\begin{cases}-x+\frac{2}{5}=3\\-x+\frac{2}{5}=-3\end{cases}}\)<=>\(\orbr{\begin{cases}x=-\frac{13}{5}\\x=\frac{17}{5}\end{cases}}\)

\(bn\)\(xem\)\(lai\)\(giup\)\(mk\)\(cho\)\(\frac{x+522}{7}\)\(neu\)\(thay\)\(bang\)\(\frac{x+552}{7}\)\(thi\)\(dug\)\(hon\)
thế thì bạn giải thử xem cô t ra đề thế mà ừ thì cứ cho là x + 552 cx đc

a, ( 8x - 3 ) ( 3x + 2 ) - ( 4x + 7 ) ( x + 4 ) = ( 2x + 1 ) ( 5x - 1 )
( 24x2 + 16x - 9x - 6 ) - ( 4x2 - 16x - 7x + 28 ) = 10x2 - 2x + 5x -1
24x2 + 16x - 9x - 6 -4x2 - 16x - 7x - 10x2 + 2x - 5x = 6 + 28 - 1
10x2 -19x = 33
10x2 - 19x -33 = 0 \(\Leftrightarrow\)10x( x+ 3 ) + 11 ( x- 3 ) = 0
=> ( x- 3 ) ( 10x + 11 ) = 0\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-11}{10}\end{cases}}\)
b, 4( x - 1 ) ( x + 5 ) - ( x + 2 ) ( x + 5 ) = 3( x - 1 ) ( x + 2 )
4( x2 - 5x - x + 5 ) - ( x2 + 5x + 2x + 10 ) = 3( x2 + 2x - x - 2 )
4x2 - 20x - 4x + 20 - x2 - 5x - 2x - 10 = 3x2 + 6x - 3x - 6
( 4x2 - x2 ) + ( -20x - 4x - 5x - 2x ) + 20 - 10 = 3x2 + ( 6x - 3x ) - 6
3x2 - 31x - 3x2 - 3x = -6-10
-34x = -16
x = \(\frac{8}{17}\)

\(\frac{x-3}{x+5}=\frac{5}{7}\Rightarrow7\left(x-3\right)=5\left(x+5\right)\)
=> 7x - 21 = 5x + 15
=> 7x - 5x = 15 + 21
=> 2x = 36
=> x = 18
\(\frac{x-3}{x+5}=\frac{5}{7}\Rightarrow5.\left(x+5\right)=7.\left(x-3\right)\)
\(5x+25=7x-21\)
\(5x-7x=-21-25\)
\(-2x=-46\)
\(x=23\)