Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n+2⋮n-1\)
\(\Rightarrow n-1+3⋮n-1\)
\(n-1⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\inƯ\left(3\right)\)
\(\Rightarrow n-1\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{0;2;-2;4\right\}\) mà n thuộc N
\(\Rightarrow n\in\left\{0;2;4\right\}\)
b, \(2n+7⋮n+1\)
\(\Rightarrow2n+2+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(2\left(n+1\right)⋮n+1\)
\(\Rightarrow5⋮n+1\)
đến đây lm tp như phần a
\(a,n+2⋮n-1\)
\(\Leftrightarrow\left(n-1\right)+3⋮n-1\)
Vì \(\hept{\begin{cases}n-1⋮n-1\\n+2⋮n-1\end{cases}\Rightarrow3⋮n-1\Leftrightarrow n-1\in}U\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)
Mà \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
Vậy \(n\in\left\{0;2;4\right\}.\)
\(b,2n+7⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)+5⋮n+1\)
Vì \(\hept{\begin{cases}2\left(n+1\right)⋮n+1\\2n+7⋮n+1\end{cases}\Rightarrow}5⋮n+1\Leftrightarrow n+1\in U\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-5;-2;0;4\right\}\)
Mà \(n\in N\Rightarrow n\in\left\{0;4\right\}\)
Vậy \(n\in\left\{0;4\right\}.\)
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
5 chia hết cho n + 2
n + 2 thuộc U(5) = {-5;-1;1;5}
n thuộc {-7 ; -3 ; -1 ; 3}
b) 2n + 15 chia hết cho n + 2
2n + 4+ 11 chia hết cho n + 2
11 chia hết cho n + 2
n + 2 thuộc U(11) = {-11; -1 ; 1 ; 11}
n thuộc {-13 ; -3 ; -1 ; 9}
a, n + 3 \(⋮\)n - 2
\(\Rightarrow\) n + 3 - n + 2 \(⋮\)n - 2
\(\Rightarrow\)5 \(⋮\) n - 2
\(\Rightarrow\) n \(\in\){3; 1; 7; -3 }
CÁC PHẦN TIẾP THEO THÌ TƯƠNG TỰ
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
do n thuộc N nên : các giá trị n la : {0;4}