Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Lời giải:
Ta thấy $n,n-3$ khác tính chẵn lẻ nên $n(n-3)$ chẵn
$\Rightarrow n^2-3n+1$ lẻ. Do đó:
$25\equiv -1\pmod{13}$
$\Rightarrow 25^{n^2-3n+1}\equiv (-1)^{n^2-3n+1}\equiv -1\pmod {13}$
$\Rightarrow 25^{n^2-3n+1}-12\equiv -13\equiv 0\pmod {13}$
Vậy $25^{n^2-3n+1}-12$ luôn chia hết cho $13$ với mọi $n$ nguyên dương
Do đó để nó là snt thì $25^{n^2-3n+1}-12=13$
$\Leftrightarrow n^2-3n+1=1$
$\Leftrightarrow n(n-3)=0$
$\Leftrightarrow n=3$ (do $n$ nguyên dương)
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp