K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

a) \(P=n^3-n^2-n-2\)

\(P=n^3-2n^2+n^2-2n+n-2\)

\(P=n^2\left(n-2\right)+n\left(n-2\right)+\left(n-2\right)\)

\(P=\left(n-2\right)\left(n^2+n+1\right)\)

16 tháng 8 2019

Lỡ tay ấn nhầm nút gửi, làm tiếp 

Ta có \(P=\left(n-2\right)\left(n^2+n+1\right)\)

Để P nguyên tố thì P có một thừa số bằng 1

+) TH1: \(n-2=1\Leftrightarrow n=3\)

Khi đó \(P=13\)( thỏa )

+) TH2: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow\orbr{\begin{cases}n=0\\n=-1\end{cases}}\)

Với \(n=0\Leftrightarrow P=-2\)( loại )

Với \(n=-1\Leftrightarrow P=-3\)( loại )

Vậy \(n=3\)thỏa mãn.

9 tháng 4 2021

undefined

9 tháng 4 2021

`P=n^3-n^2+n-1`

`=n^2(n-1)+(n-1)`

`=(n-1)(n^2+1)`

Vì n là stn thì p là snt khi

`n-1=1=>n=2`

Vậy n=2

\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)

Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp

nên n^3+3n^2+2n chia hết cho 3!=6

=>Để P nguyên thì 2n+1/1-2n nguyên

=>2n+1 chia hết cho 1-2n

=>2n+1 chia hết cho 2n-1

=>2n-1+2 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

12 tháng 10 2021

cc

4 tháng 7 2016

=(n3-n2)-(n+2)

=n2(n-1)-(n+2)=>n=1

12 tháng 10 2021

đéo

 

12 tháng 10 2021

áp dụng công thức là ra mà ?

11 tháng 3 2016

moi hoc lop 5

11 tháng 3 2016

n =13 nha bn

28 tháng 8 2016

n=2=>biểu thức có dạng:
23-22-2-2=0(0 ko phải số nguyên tố)
=> n=2(loại)
n=3=>biểu thức có dạng:
33-32-3-2=13(13 là số nguyên tố)
=> n=3
(Xin nói luôn,mấy dạng toán kiểu số nguyên tố này thì kết quả luôn =3,tiện cho mình cái tích)




 

31 tháng 8 2016

Sai  rồi bạn ạ mình có kết quả nè ^-^:

P = n3 - n2 - n - 1 - 1

P = (n3 -1) - (n+ n +1)

P = (n - 1)(n2 + n + 1) - (n+ n + 1)

P = (n2 + n + 1)(n - 2) 

Vì n \(\in\) N

\(\Rightarrow\) n2 + n +1 > n – 2

Để P là sốnguyên tố:

\(\Rightarrow\) P là SNT > 1

\(\Rightarrow\)P chỉ có 2 ước là 1 và chính nó

n - 2 = 1

n = 3

Thay n = 3

P = (32 + 3 + 1)(3 - 2)

P = 13 . 1

P = 13

Vậy n = 3 thì P là SNT