Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
chia hết cho \(2,3,4,5.\)
b ) Cần chứng minh
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*
là một số chính phương .
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặt : \(n^2+3n=y\) thì
\(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)
\(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*
Ta có: \(1\frac{3}{7}=\frac{10}{7}\)
\(\Rightarrow a⋮\frac{10}{7}\) và \(a⋮\frac{3}{5}\)
\(\Rightarrow a=5.10=50\)
câu 5 :vì đồ thị của hàm số y =ax (a khác 0) là 1 đường thẵng đi qua góc toạ độ nên 3 điểm o,m,m là 1 đường thẳng ,k nha
doi 1/3/7 ra phan so ta duoc :10/7
vi a chia het cho 3/5 va a cung chia het cho 10/7
suy ra a thuoc bcnn (3;10)=3x2x5=30
vay so tu nhien a la 30
chuc ban hoc gioi nhe
3IB = 2TC
IB/2 = IC/3 = TB + IC/ 2+3 = BC/5
TC/3 = BC/5 = BC/IC = 5/3
Bn bảng A hay bảng B thế???
Ta có:
\(a:\frac{3}{5}=\frac{5a}{3}\) là số tự nhiên \(\Rightarrow5a⋮3\)
Mà \(\left(5;3\right)=1\Rightarrow a⋮3\left(1\right)\)
Lại có: \(a:1\frac{3}{7}=a:\frac{10}{7}=\frac{7a}{10}\) là số tự nhiên \(\Rightarrow7a⋮10\)
Mà \(\left(7;10\right)=1\Rightarrow a⋮10\left(2\right)\)
Từ (1) và (2) => a ϵ BC(3; 10)
Mà a nhỏ nhất => a = BCNN(3;10) = 30
Vậy số tự nhiên a nhỏ nhất cần tìm là 30
a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)
Xét m = 0 thì \(n^2+2n+12=0\) (1)
Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)
Do \(\Delta< 0\) nên (1) vô nghiệm (*)
Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)
Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)
Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)
Do \(\Delta< 0\) nên (2) vô nghiệm (**)
Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)
c: \(3^{200}=9^{100}\)
\(2^{300}=8^{100}\)
mà 9>8
nên \(3^{200}>2^{300}\)
d: \(71^{50}=5041^{25}\)
\(37^{75}=50653^{25}\)
mà 5041<50653
nên \(71^{50}< 37^{75}\)