K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

a, \(A=\left(1+x^2\right)+\left|y+\frac{1}{5}\right|-3\)

\(A=\left|y+\frac{1}{5}\right|+x^2-2\)

Ta có: \(\begin{cases}\left|y+\frac{1}{5}\right|\ge0\\x^2\ge0\end{cases}\)\(\Rightarrow\left|y+\frac{1}{5}\right|+x^2\ge0\Rightarrow\left|y+\frac{1}{5}\right|+x-2\ge-2\Rightarrow A\ge-2\)

Vậy GTNN của \(A=\left(1+x^2\right)+\left|y+\frac{1}{5}\right|-3\) là - 2.

b, a đâu bạn ?

4 tháng 6 2016

câu b ko làm đc đâu

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

Hi m.n Sau đây là đè thi HK2 trường tớ :))Câu 1 :A = ( 2.x^2.y^3 ) . ( -3.x^3.y^4 )a) Thu gọn đợn thức A b) Xác định hệ số và bậc của đơn thức A sau khi đã thu gọnCâu 2: Cho đa thức P(x) = 3.x^2 + 4x - 3.x^2 - x +5a) Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến.b) Tính P(1) và P(1/5)c) Tìm nghiệm của đa thức P(x)Câu 3 :Cho 2 đa thức f(x) = 4.x^3+7x^2 + 3.x + 1/2 và g(x) = -4x^3 + 7x^2...
Đọc tiếp

Hi m.n Sau đây là đè thi HK2 trường tớ :))
Câu 1 :
A = ( 2.x^2.y^3 ) . ( -3.x^3.y^4 )
a) Thu gọn đợn thức A 
b) Xác định hệ số và bậc của đơn thức A sau khi đã thu gọn

Câu 2: 
Cho đa thức P(x) = 3.x^2 + 4x - 3.x^2 - x +5
a) Thu gọn và sắp xếp các hạng tử của P(x) theo lũy thừa giảm dần của biến.
b) Tính P(1) và P(1/5)
c) Tìm nghiệm của đa thức P(x)

Câu 3 :
Cho 2 đa thức f(x) = 4.x^3+7x^2 + 3.x + 1/2 và g(x) = -4x^3 + 7x^2 - 3x - 5/6
a) Tính f(x) + g(x)
b) Tính f(x) - f(x)
Câu 4 :
Cho tam giác ABC vuông tại A. Vẽ BD là tia phân giác của góc ABC ( d thuộc AC) kẻ đường thẳng DE vuuong góc với BC (e thuộc BC )
a) Chứng minh Tam giác ABD = tam giác EBD
b ) Đường thẳng DE cắt AB tại F . Chứng minh DF > DE

c) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC
 Câu 5 :  cho f(x) = a.x^3 + b.x^2 + c.x + d trong đó a,b,c,d thuộc Z và thỏa mãn b = 3a + c
Chứng minh rằng: tích của f(1) và f(-2) là bình phương của 1 số nguyên.
---------------------> Hết <--------------------

0
27 tháng 7 2018

B2:

a/b=b/c=c/a=a+b+c/b+c+a=1

suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)

...................................................................................................

với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c

28 tháng 7 2018

Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha