K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

a/ \(y=\left(m-1\right)x+2m-1\)

\(\Leftrightarrow\left(m-1\right)x+2\left(m-1\right)+1-y=0\)

\(\Leftrightarrow\left(m-1\right)\left(x+2\right)+1-y=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\1-y=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(-2;1\right)\)

b/ d qua A \(\Rightarrow7=3m+1\Rightarrow m=2\)

Phương trình hoành độ giao điểm: \(2x^2-mx-1=0\)

\(\Delta=m^2+8>0\Rightarrow d\) luôn cắt (P) tại 2 điểm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{m}{2}\\x_1x_2=-\frac{1}{2}\end{matrix}\right.\)

\(T=x_1x_2+\left(2x_1\right)^2.\left(2x_2\right)^2=16\left(x_1x_2\right)^2+x_1x_2\)

\(=16\left(-\frac{1}{2}\right)^2-\frac{1}{2}=\frac{7}{2}\)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m+1=-3

hay m=-4

 

13 tháng 1 2022

Còn phần b nữa bạn ơi

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

17 tháng 5 2021

đơn giản vl

12 tháng 3 2023

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx+5\)

\(x^2-mx-5=0\)

\(\Delta=m^2+20\)

Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt

Câu tìm m bạn ghi rõ đề ra nhá

12 tháng 3 2023

đề ns z á chắc đề sai đâu r cảm ơn bn nhiều 

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

a: PTHĐGĐ là;

x^2-(2m-3)x+m^2-3m=0

Δ=4m^2-12m+9-4m^2+12m=9>0

=>(P) luôn cắt (d) tại hai điểm pb

b: |x1|+|x2|=3

=>x1^2+x2^2+2|x1x2|=9

=>(2m-3)^2-2(m^2-3m)+2|m^2-3m|=9

TH1: m>=3 hoặc m<=0

=>(2m-3)^2=9

=>m=3(nhận) hoặc m=0(nhận)

Th2: 0<m<3

=>4m^2-12m+9-4(m^2-3m)=9

=>4m^2-12m-4m^2+12m=0

=>0m=0(luôn đúng)

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn