\(\in N\) thỏa mãn :\(\dfrac{a}{2}+\dfrac{b}{3}=\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

1.

\(\dfrac{19.20}{19+20}=\dfrac{380}{39}=9\dfrac{29}{39}\)

\(\dfrac{\overline{aaa}}{\overline{aa}}=\dfrac{111.a}{11.a}=\dfrac{111}{11}=10\dfrac{1}{11}\)

\(\dfrac{\overline{ababa}}{\overline{aba}}=\dfrac{100.\overline{aba}+\overline{ba}}{\overline{aba}}=\dfrac{100.\overline{aba}}{\overline{aba}}+\dfrac{\overline{ba}}{\overline{aba}}=100\dfrac{\overline{ba}}{\overline{aba}}\)

2.

\(6\dfrac{23}{41}=\dfrac{6.41+23}{41}=\dfrac{269}{41}\)

\(a\dfrac{a}{99}=\dfrac{a.99+a}{99}=\dfrac{100.a}{99}=\dfrac{\overline{a00}}{99}\)

\(1\dfrac{a-b}{a+b}=\dfrac{a+b+a-b}{a+b}=\dfrac{2.a}{a+b}\)

3.

\(\dfrac{69}{1000}=0,069\)

\(8\dfrac{77}{100}=8,77\)

\(\dfrac{34567}{10^4}=\dfrac{34567}{10000}=3,4567\)

\(\dfrac{\overline{abc}}{10^n}=\dfrac{\overline{abc}}{10...0}=\overline{0,0...0abc}\)

n số hạng 0 n - 3 số hạng 0 ở phần thập phân

12 tháng 4 2017

Bài 1:

Ta có:

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

\(225\) lẻ nên \(\left\{{}\begin{matrix}100a+3b+1\\2^a+10a+b\end{matrix}\right.\) cùng lẻ \(\left(2\right)\)

\(*)\) Với \(a=0\) ta có:

Từ \(\left(1\right)\Leftrightarrow\left(100.0+3b+1\right)\left(2^a+10.0+b\right)=225\)

\(\Leftrightarrow\left(3b+1\right)\left(1+b\right)=225=3^2.5^2\)

Do \(3b+1\div3\)\(1\)\(3b+1>1+b\)

Nên \(\left(3b+1\right)\left(1+b\right)=25.9\) \(\Rightarrow\left\{{}\begin{matrix}3b+1=25\\1+b=9\end{matrix}\right.\) \(\Leftrightarrow b=8\)

\(*)\) Với \(a\ne0\left(a\in N\right)\) ta có:

Khi đó \(100a\) chẵn, từ \(\left(2\right)\Rightarrow3b+1\) lẻ \(\Rightarrow b\) chẵn

\(\Rightarrow2^a+10a+b\) chẵn, trái với \(\left(2\right)\) nên \(b\in\varnothing\)

Vậy \(\left\{{}\begin{matrix}a=0\\b=8\end{matrix}\right.\)

Bài 2:

Ta có:

\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+...+2017}\)

\(=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+...+\dfrac{1}{\dfrac{\left(1+2017\right).1009}{2}}\)

\(=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...+\dfrac{2}{1009.2018}\)

\(=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{1009.1009}\)

\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1008.1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1009}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) (Đpcm)

25 tháng 4 2017

Tuyệt cú mèokhocroikhocroikhocroi

1.Tính giá trị các biểu thức sau a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\) b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\) 2.Tìm x biết \(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\) 3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13 b, Cho M = b -...
Đọc tiếp

1.Tính giá trị các biểu thức sau

a, A = \(\dfrac{4}{7.31}+\dfrac{6}{7.41}+\dfrac{9}{10.41}+\dfrac{7}{10.57}\)

b, B = \(\dfrac{7}{19.31}+\dfrac{5}{19.43}+\dfrac{3}{23.43}+\dfrac{11}{23.57}\)

2.Tìm x biết

\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)

3. a, Biết a + 4b ⋮ 13 (a, b ∈ N). Chứng minh rằng 397a - 11b ⋮ 13

b, Cho M = b - \(\dfrac{2017}{2018}\left(-a+b\right)-\left(\dfrac{1}{2018}b+\dfrac{2015}{2017}c-a\right)-\left(\dfrac{2}{201}c+a\right)+c\)

Trong đó b, c ∈ Z và a là số nguyên âm. Chứng minh rằng M luôn có giá trị dương

4. a, Tìm tất cả các cặp số nguyên khác 0 sao cho tổng của chúng bằng tổng các nghịch đảo của chúng

b, Tìm số nguyên tố \(\overline{ab}\) (a > b > 0) sao cho \(\overline{ab}-\overline{ba}\) là số chính phương

5. Tìm các số tự nhiên a và b thỏa mãn \(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\)

1

Câu 2: 

\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)

\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)

\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)

=>x=11

18 tháng 2 2019

\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)

mà a,b là số tự nhiên nên \(a,b\ge0\)

nên \(9a+4b\ge0\)

dấu bằng xảy ra khi a=b=0

18 tháng 2 2019

mk làm sai nha bạn

sr bạn

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

24 tháng 4 2017

a.Gọi số đó là a,ta có;

a=5c+2=>a+3=5c+2+3=5c+5=5(c+1)chia hết cho 5 (c thuộc N)

Vì 70 chia hết cho 5 nên (a+3)+70 cũng chia hết cho 5 (1)

a=13b+5=>a+8=13b+13=13(1+b)chia hết cho 13 (b thuộc N)

Vì 65 chia hết cho 13 nên (a+8)+65chia hết cho 13(2)

Từ (1) và (2) =>a+73 chia hết cho BCNN(13;5)<=>a+73 chia hết cho 65

=>a=65k-73

Để a nhỏ nhất ta chọn k=3.Khi đó a= 122

12 tháng 5 2017

\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow b=\dfrac{3}{2}a\)

\(\dfrac{a}{2}=\dfrac{c}{5}\Rightarrow c=\dfrac{5}{2}a\)

=>B=\(\dfrac{a+7\cdot\left(\dfrac{3}{2}a\right)-2\cdot\left(\dfrac{5}{2}a\right)}{3a+2\cdot\left(\dfrac{3}{2}a\right)-\dfrac{5}{2}a}=\dfrac{a+\dfrac{21}{2}a-5a}{3a+3a-\dfrac{5}{2}a}=\dfrac{\dfrac{13}{2}a}{\dfrac{7}{2}a}=\dfrac{13}{7}\)

12 tháng 5 2017

bài này khó thế