\(\sqrt{x^2-3x+2}=\sqrt{x-1}\)

b) \(\sqrt{x^2-4x+4}=\sqrt{4...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

a

ĐK: \(x\ge1\left(\sqrt{x-1}\ge0\right)\)

\(PT\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\\ \Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\\ \Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\\ \Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-2}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x-2}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

b

ĐK: \(\left\{{}\begin{matrix}x^2-4x+4>0\\4x^2-4x+9>0\end{matrix}\right.\)

PT \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2x-3\right)^2}\)

\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\x-2=3-2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

18 tháng 8 2019

a)...ghi lại đề...

\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-2}^2=1^2\)

\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))

\(\Leftrightarrow x=3\)

\(\)

18 tháng 8 2019

\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Rightarrow x^2-3x+2=x-1\)

\(\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy..........

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

a)

ĐK: $x\geq 2$

PT \(\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}\)

\(\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1(\text{loại vì x}\geq 2)\\ \sqrt{x-2}=1\end{matrix}\right.\)

\(\Rightarrow x=1^2+2=3\) là nghiệm duy nhất thỏa mãn

b)

ĐK: $x\in\mathbb{R}$

Bình phương 2 vế:

\(\Rightarrow x^2-4x+4=4x^2-12x+9\)

\(\Leftrightarrow (x-2)^2=(2x-3)^2\)

\(\Leftrightarrow (x-2)^2-(2x-3)^2=0\Leftrightarrow (x-2-2x+3)(x-2+2x-3)=0\)

\(\Leftrightarrow (-x+1)(3x-5)=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\) (đều thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
19 tháng 8 2019

c)

ĐKXĐ: $x\geq 3$

PT \(\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}\)

\(\Leftrightarrow (x-2)(x-3)=x-2\) (bình phương 2 vế không âm)

\(\Leftrightarrow (x-2)(x-3-1)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\\ x-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2(\text{loại vì x}\geq 3)\\ x=4\end{matrix}\right.\)

Vậy $x=4$

d)

ĐK: $x\in\mathbb{R}$

PT \(\Leftrightarrow 4x^2-4x+1=x^2-6x+9\) (bình phương 2 vế không âm)

\(\Leftrightarrow (2x-1)^2=(x-3)^2\Leftrightarrow (2x-1)^2-(x-3)^2=0\)

\(\Leftrightarrow (2x-1-x+3)(2x-1+x-3)=0\)

\(\Leftrightarrow (x+2)(3x-4)=0\Rightarrow \left[\begin{matrix} x+2=0\\ 3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\) (đều thỏa mãn)

Vậy.........

10 tháng 5 2018

1000 bang 2

Y
22 tháng 5 2019

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)

\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)

\(\Leftrightarrow\left|2x-1\right|=5x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

22 tháng 5 2019

a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)

\(\Leftrightarrow x+3=4\)

\(\Rightarrow x=1\)

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

14 tháng 7 2018

a) \(\left|3x+1\right|=\left|x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)

\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

e) \(\left|x^2-1\right|+\left|x+1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)

\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)

⇒ vô nghiệm

2 tháng 8 2017

ai trả lời dùm em cái ak. E cảm ơn nhiềuvui

6 tháng 10 2020

a.\(\sqrt{x-2}=\sqrt{4-x}\)

đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)

pt đã cho tương đương với

\(x-2=4-x\)

\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)

b.\(\sqrt{x^2-8x+6}=x+2\)

đk: \(x+2\ge0\Rightarrow x\ge-2\)

pt đã cho tương đương với

\(x^2-8x+6=\left(x+2\right)^2\)

\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)

\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)

c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)

\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)

\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)

pt tương đương: \(2x-1=25\)

\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)

d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)

\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)

\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)

\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)

đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)

pt tương đương: \(1-2x=9.3x\)

\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)

e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)

đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)

pt đã cho tương đương với

\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)

\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)

23 tháng 7 2019

d) Bài này có thể dùng hằng đẳng thức rồi phá dấu GTTĐ nhưng theo em là khá mất công nên bình phương lên rồi quy về pt bậc 2 cho lẹ:)

PT \(\Leftrightarrow4x^2-4x+1=x^2-6x+9\)

\(\Leftrightarrow3x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-2\end{matrix}\right.\) (delta là ra:D)

Vậy..

23 tháng 7 2019

e) Bài này cũng vậy, em nghĩ bình phương lên cho lẹ :D

ĐK: x>= 4

\(\left(x-4\right)+4\sqrt{x-4}=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x-4}=-4\left(L\right)\end{matrix}\right.\Rightarrow x=4\)

12 tháng 6 2017

a)   \(2x-\sqrt{4x^2+4x+1}=2x-\sqrt{\left(2x+1\right)^2}=2x-\left|2x+1\right|\)

Vì   \(x< -\frac{1}{2}\)nên   \(\left|2x+1\right|=-\left(2x+1\right)\)

\(\Rightarrow2x+2x+1=4x+1\)

b) \(3x+2-\sqrt{9x^2-12x+4}=3x+2-\sqrt{\left(3x-2\right)^2}=3x+2-\left|3x-2\right|\)

Khi   \(x\ge\frac{2}{3}\)thì   \(\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-3x+2=4\)

Khi     \(x< \frac{2}{3}\)  thì  \(\left|3x-2\right|=2-3x\)

\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-\left(2-3x\right)=6x\)

c)  \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)

Đặt   \(\sqrt{a}=x\)  ta được :  \(3x-4x+7x=6x\)\(=6\sqrt{a}\)( Do  \(a\ge0\))

d)  \(\sqrt{160a}+2\sqrt{40a}-3\sqrt{90a}=4\sqrt{10a}+4\sqrt{10a}-9\sqrt{10a}\)\(=-\sqrt{10}\)

TK NKA !!!