\(A = {\sqrt{4X^2-4X+1} \over 4x-2}\)

chứng minh giá trị tuyệt đối của A=0,5 với...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

ấn vào đúng cho mk đi mk ân cho bạn ok

NV
14 tháng 11 2019

ĐKXĐ; ...

a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)

\(P_{min}=5\) khi \(x=-2\)

b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)

\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)

\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)

\(=1-\left(x-1\right)^2\le1\)

\(Q_{max}=1\) khi \(x=1\)

25 tháng 7 2019

\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)

Vậy \(A_{min}=1\Leftrightarrow x=-1\)

25 tháng 7 2019

\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)

Vậy \(B_{min}=2\Leftrightarrow x=-2\)

10 tháng 2 2018

a)4x-3=4-3x

<=>4x+3x=4+3

<=>7x=7

<=>x=1

12 tháng 2 2018

\(\text{b)3+x-5=}6x-4\Leftrightarrow x-6x=-4+5-3\Leftrightarrow-5x=-2\Leftrightarrow x=\dfrac{2}{5}\)

vậy S=\(\left\{\dfrac{2}{5}\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

\(A=\frac{x^2-x+2}{x-2}=\frac{x(x-2)+(x-2)+4}{x-2}=x+1+\frac{4}{x-2}\)

Với $x$ nguyên, để $A$ nguyên thì $\frac{4}{x-2}$ nguyên.

Điều này xảy ra khi $4\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$

$\Rightarrow x\in \left\{3; 1; 0; 4; 6; -2\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

2.

\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1\)

Với $x$ nguyên thì $P=2x-1$ nguyên.

$\Rightarrow P$ nguyên với mọi giá trị $x$ nguyên.