Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}\)
A = \(\dfrac{\sqrt{\left(2x-1\right)^2}}{2\left(2x-1\right)}\)
A = \(\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)
\(\left|A\right|=\dfrac{2x-1}{2\left(2x-1\right)}\) \(\Rightarrow\left|A\right|=\dfrac{1}{2}=0,5\left(x\ne0,5\right)\)
a) A \(=\frac{x^2-4}{2}\cdot\sqrt{\frac{2^2}{\left(x-2\right)^2}}\) \(=\frac{x^2-4}{2}\cdot\left|\frac{2}{x-2}\right|\)
+ Với x < 2 ta có \(A=\frac{x^2-4}{2}\cdot\frac{2}{2-x}\)
\(A=\frac{\left(x+2\right)\left(x-2\right)}{2-x}=-\left(x+2\right)\)
+ Với x > 2 ta có : \(A=\frac{x^2-4}{2}\cdot\frac{2}{x-2}\)
\(A=\frac{\left(x-2\right)\left(x+2\right)}{x-2}=x+2\)
câu b và c tương tự
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
\(A=3+\sqrt{2\left(x-1\right)^2+1}\ge3+\sqrt{1}=4\)
\(A_{min}=4\) khi \(x=1\)
\(B=\sqrt{\left(x-4\right)^2+2}-12\ge\sqrt{2}-12\)
\(B_{min}=\sqrt{2}-12\) khi \(x=4\)
\(C=\sqrt{\left(2x-1\right)^2+4}+1\ge\sqrt{4}+1=3\)
\(C_{min}=3\) khi \(x=\frac{1}{2}\)
\(A=\dfrac{\sqrt{4x^2-4x+1}}{4x-2}=\dfrac{\sqrt{\left(2x-1\right)^2}}{2\left(2x-1\right)}=\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)
\(\Rightarrow\left|A\right|=\left|\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\right|=\dfrac{\left|2x-1\right|}{2\left|2x-1\right|}=\dfrac{1}{2}\)
Ta có: \(A=\dfrac{\sqrt{4x^2-4x+1}}{4x-2}\)
\(=\dfrac{\left|2x-1\right|}{2\left(2x-1\right)}\)
\(=\left[{}\begin{matrix}-\dfrac{\left(2x-1\right)}{2\left(2x-1\right)}=-\dfrac{1}{2}\left(x< \dfrac{1}{2}\right)\\\dfrac{2x-1}{2\left(2x-1\right)}=\dfrac{1}{2}\left(x\ge\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|A\right|=0.5\)
a: \(=4a-4\sqrt{10a}-9\sqrt{10a}=4a-13\sqrt{10a}\)
b: \(=\sqrt{x}\left(4-\sqrt{2}\right)\cdot\sqrt{x}\left(1-\sqrt{2}\right)\)
\(=x\cdot\left(4-4\sqrt{2}-\sqrt{2}+2\right)\)
\(=\left(6-5\sqrt{2}\right)x\)
c: \(=\dfrac{2}{2x-1}\cdot x\sqrt{5}\cdot\left(2x-1\right)=2x\sqrt{5}\)
I not sure for this answer if have any trouble you can ask me
a)\(\sqrt{x^2-4x+5}\ge\forall x\)
\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)
mà \(\sqrt{\left(x+1\right)^2}\ge0\forall x\)
nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)
Trả lời:
a,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2.\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=t\)\(\Rightarrow x=t^2+1\)
Đẳng thức đã cho trở thành:
\(VT=\)\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}\)
\(=\sqrt{t^2+2t+1}+\sqrt{t^2-2t+1}\)
\(=\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}\)
\(=t+1+t-1\)
\(=2t\)
\(=2.\sqrt{x-1}=VP\)
Vậy \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2.\sqrt{x-1}\)
b, \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}=\sqrt{6}\)
Đặt \(\sqrt{4x-1}=t\)\(\Rightarrow2x=\frac{t^2+1}{2}\)
Đẳng thức đã cho trở thành:
\(VT=\sqrt{\frac{t^2+1}{2}+t}+\sqrt{\frac{t^2+1}{2}-t}\)
\(=\sqrt{\frac{t^2+2t+1}{2}}+\sqrt{\frac{t^2-2t+1}{2}}\)
\(=\sqrt{\frac{\left(t+1\right)^2}{2}}+\sqrt{\frac{\left(t-1\right)^2}{2}}\)
\(=\frac{t+1}{\sqrt{2}}+\frac{t-1}{\sqrt{2}}\)
\(=\frac{2t}{\sqrt{2}}\)
\(=\frac{2.\sqrt{4x-1}}{\sqrt{2}}\)
chưa học cái này