Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\sqrt{3-2}=1\)
b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`
`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`
`=sqrt{3-2}=1`
`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`
`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`
`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`
`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`
`c)C=3-sqrt{3-sqrt5}`
`=3-sqrt{(6-2sqrt5)/2}`
`=3-sqrt{(sqrt5-1)^2/2}`
`=3-(sqrt5-1)/sqrt2`
`=3-(sqrt{10}-sqrt2)/2`
`=(6-sqrt{10}+sqrt2)/2`
a, \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b, \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3}{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}}{2}+\dfrac{\sqrt{3}}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{6}}{2}+\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\dfrac{\sqrt{6}}{2}+3-\sqrt{6}=\dfrac{6-\sqrt{6}}{2}\)
c, \(3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+3\sqrt{2}=6\sqrt{2}\)
d, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}+3\right)^2}\)
\(=-\sqrt{6}+3+2\sqrt{6}+3=\sqrt{6}+6\)
e, Ghi đúng đề.
\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=\dfrac{a+b-2\sqrt{ab}+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
a: \(A=\dfrac{2\sqrt{2}\left(\sqrt{3}+1\right)}{3\cdot\sqrt{2+\sqrt{3}}}=\dfrac{4\left(\sqrt{3}+1\right)}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3\left(\sqrt{3}+1\right)}=\dfrac{4}{3}\)
b: \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\left|3\sqrt{5}-3\right|\)
\(=\sqrt{5}-\sqrt{3}-3\sqrt{5}+3=3-\sqrt{3}-2\sqrt{5}\)
a: \(\sqrt{5+2\sqrt{6}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\left|\sqrt{2}-\sqrt{3}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
b: Sửa đề: \(\dfrac{7-2\sqrt{7}}{2-\sqrt{7}}+\dfrac{6}{\sqrt{7}+1}+\left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right)\)
\(=\dfrac{\sqrt{7}\left(\sqrt{7}-2\right)}{-\left(\sqrt{7}-2\right)}+\dfrac{6\left(\sqrt{7}-1\right)}{6}+18-12\)
\(=-\sqrt{7}+\sqrt{7}-1+6=5\)
a)
\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{2}+1=\sqrt{3}+1\)
b)
\(\sqrt{\left(\sqrt{9}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{16}+\sqrt{2}\right)^2}=\sqrt{9}+\sqrt{2}-\sqrt{16}-\sqrt{2}=3-4=-1\)
c)
\(=\sqrt{2\left(2-\sqrt{3}\right)}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
a) \(=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
b) \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}=2+\sqrt{3}-1-\sqrt{3}=1\)
c) \(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}+1+\sqrt{7}-1=2\sqrt{7}\)
d) \(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{5}+\sqrt{2}-\sqrt{2}+1=\sqrt{5}+1\)
a.
\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)
b.
\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)
c.
\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)
d.
\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
e.
Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)
Khi đó:
$a^3+b^3=4$
$ab=\frac{2}{3}$
$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$
$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$
$(E-2)(E^2+2E+2)=0$
Dễ thấy $E^2+2E+2>0$ nên $E-2=0$
$\Leftrightarrow E=2$
câu 1:0
câu 2:0,637499922
cách làm bạn ơi ?