K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

a) S=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)

2S=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2017.2019}\)

2S=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)

2S=\(1-\dfrac{1}{2019}\)

2S=\(\dfrac{2018}{2019}\)

S\(\dfrac{1009}{2019}\)

30 tháng 7 2021

b) Gọi ƯCLN(14n+3,21n+5) là d

14n+3⋮d ⇒42n+9⋮d

21n+5⋮d ⇒42n+10⋮d

(42n+10)-(42n+9)⋮d

1⋮d ⇒ƯCLN(14n+3,21n+5)=1

Vậy \(\dfrac{14n+3}{21n+5}\) là Ps tối giản

15 tháng 4 2021

Ta có: A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2013.2015}\)

\(\Leftrightarrow2A=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}\right)\)

\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2013}+\dfrac{1}{2013}-\dfrac{1}{2015}\)

\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2015}=\dfrac{2012}{6045}\)

\(\Leftrightarrow A=\dfrac{1006}{6045}\)

15 tháng 4 2021

2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{2013.2015}\)

2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}+\dfrac{1}{2015}\)

2A=\(\dfrac{1}{1}-\dfrac{1}{2015}\)

2A=\(\dfrac{2014}{2015}\)

 A=\(\dfrac{1007}{2015}\)

                     Khi gặp bài này, bn nên tách 1 phân số ra thành hiệu của 2 phân số.

 

Gọi d=ƯCLN(14n+3;21n+5)

=>42n+9-42n-10 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

11 tháng 5 2023

ừm...PSTG là gì ạ???

số 9 và số 10 là từ đâu ạ?

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+.....+\dfrac{1}{2021.2023}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{2021.2023}\right)\)

\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(=\dfrac{1}{2}.\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}.\dfrac{2022}{2023}=\dfrac{1011}{2023}\)

 

12 tháng 3 2023

Ta có A = \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2021\cdot2023}\)

            = \(\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2021\cdot2023}\right)\)

            = \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}+\dfrac{1}{2023}\right)\)

            = \(\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)=\dfrac{1}{2}\cdot\dfrac{2022}{2023}=\dfrac{1011}{2023}\)
 

20 tháng 4 2021

Ta có : \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2020}=1-\dfrac{1}{2020}=\dfrac{2019}{2020}\)

mà \(2019< 2020\)nên P < 1 ( đpcm ) 

28 tháng 4 2021

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2019.2021}\) 

\(P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\) 

\(P=1-\dfrac{1}{2021}\) 

\(P=\dfrac{2020}{2021}\)

Vì \(\dfrac{2020}{2021}< 1\) ⇒ \(P< 1\) ( điều phải chứng minh ) 

1 tháng 5 2021

Giả sử UCLN(14n+3;21n+5)=d

14n+3 chia hết cho d nên 42n+9 chia hết cho d

21n+5 chia hết cho d nên 42n+10 chia hết cho d

vay 1 chia hết cho d, d=1

Vậy phân số tối giản

Giải:

Gọi ƯC(14n+3;21n+5)=d

⇒14n+3 ⋮ d              ⇒3.(14n+3) ⋮ d            ⇒42n+9 ⋮ d

    21n+5 ⋮ d                2.(21n+5) ⋮ d               42n+10 ⋮ d

⇒(42n+10)-(42n+9) ⋮ d

⇒   1 ⋮ d

⇒d=1

Vậy 14n+3/21n+5 là phân số tối giản.

Chúc bạn học tốt!

Giải: 1) A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019     A=1/2.(2/1.3+2/3.5+2.5.7+2/7.9+...+2/2017.2019)     A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+...+1/2017-1/2019)     A=1/2.(1/1-1/2019)     A=1/2.2018/2019     A=1009/2019 Chúc bạn học tốt!
30 tháng 7 2021

bn ơi viết đpá án hơi khó nhìn xíu nhalolang

11 tháng 7 2017

\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)

\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)

\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)

\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)

\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)

\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)

\(B=\dfrac{4.9.16.100}{3.8.15.99}\)

\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)

\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)

\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)

a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)

b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)