Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-4n=n\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)
Vì n chẵn => n - 2 và n + 2 cũng là số chẵn
Có n(n-2)(n+2) chia hết cho 2 và 4
\(\Rightarrow n^3-4n⋮\left(2.4.2\right)=16\)
\(n^3+4n=n^3-n+5n=n\left(n^2-1\right)+5n=\left(n-1\right)n\left(n+1\right)+5n\)
Có \(\left(n-1\right)n\left(n+1\right)⋮2;3;4\)
\(5n⋮2\)
\(\Rightarrow n^3+4n⋮16\)
Gọi n là 2k
\(\Rightarrow n^3-4n=\left(2k\right)^3-4.2k=8k^3-8k=8k\left(k^2-1\right)=8k.\left(k-1\right)\left(k+1\right)\)
Với k chẵn
\(\Rightarrow8k⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(1)
Với k lẻ
\(\Rightarrow k-1⋮2\Rightarrow8k\left(k-1\right)⋮16\Rightarrow8k.\left(k-1\right)\left(k+1\right)⋮16\Rightarrow n^3-4n⋮16\)(2)
Từ (1) và (2)
\(\Rightarrow n^3-4n⋮16\)
Tương tự
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
Ta có bđt:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)\)
Áp dụng ta có: Đề bài sẽ bằng:0 \(\left(4n+3-5\right)\cdot\left(4n+3+5\right)\)\(=\left(4n-2\right)\left(4n+8\right)⋮8\)vì\(4n-2⋮2,4n+8⋮4\)
(4n+3)^2-25
=(4n+3)^2-5^2
=(4n+3+5)(4n+3-5)
=(4n+8)(4n-8)
=[4(n+2)][2(n-4)]
=8(2+n)(n-4)luôn chia hết cho 8
Vậy...
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
Ta có: \(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\) \(=n\left(n^4-n^2-4n^2+4\right)\) \(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\) \(=n\left(n^2-1\right)\left(n^2-4\right)\) \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\) \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3 ; 5 và 8. Mà 3.5.8 = 120. => \(n^5-5n^3+4n⋮120\) Vậy ...
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5.
Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
\(4n^2\left(n+2\right)+4n\left(n+2\right)=\left(n+2\right)\left(4n^2+4n\right)=4n\left(n+1\right)\left(n+2\right)\)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\) ta có
+ Nếu n chẵn => A chia hết cho 2
+ Nếu n lẻ thì n+1 chia hết cho 2 => A chia hết cho 2
=> A chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 với mọi n
=> A đồng thời chia hết cho cả 2 và 3 với mọi n => A chia hết cho 6 với mọi n => A có thể biểu diễn thành A=6.k
=> 4A=4.6.k=24.k chia hết cho 24 (dpcm)
4n2(n+2)+4n(n+2)
=4n(n+2)(n+1)
Ta có: 24=2.3.4 và ƯCLN(2,3,4)=1 nên ta chứng minh 4n(n+2)(n+1) chia hết cho 2,3 và 4
n chia cho 2 sẽ có 2 dạng là 2k và 2k+1 (k\(\in\)Z)
+) Với n = 2k thì \(n⋮2\)=> 4n(n+1)(n+2)\(⋮2\)(1)
+) Với n = 2k+1 thì n+1=2k+2
Vì 2k+2\(⋮2\)nên 4n(n+1)(n+2)\(⋮2\)(2)
Từ (1) và (2) => 4n(n+1)(n+2)\(⋮\)2 với mọi n\(\in Z\)
n chia cho 3 có 3 dạng là: 3m+1, 3m+2 và 3m
+) Với n = 3m thì n\(⋮\)3 => 4n(n+1)(n+2)\(⋮\)3 (3)
+) với n = 3m+1 thì n+2=3m+1+2=3m+3
Vì 3m+3\(⋮3\) nên 4n(n+1)(n+2)\(⋮3\)(4)
+) Với n = 3m+2 thì n+1=3m+2+1=3m+3
Vì 3m+3\(⋮3\)nên 4n(n+1)(n+2)\(⋮3\)(5)
Từ (3)(4)(5) => 4n(n+1)(n+2)\(⋮3\)với mọi \(n\in Z\)
Vì 4\(⋮\)4 nên 4n(n+1)(n+2)\(⋮4\)
Ta có: 4n(n+1)(n+2) chia hết cho 2,3,4
=> 4n(n+1)(n+2) \(⋮24\)với mọi \(n\in Z\)
Vậy 4n2(n+2)+4n(n+2)\(⋮24\)với mọi\(n\in Z\)
đề bài?
Chứng minh rằng với mọi N thuộc Z Thì
A=n ^ 3 - 4n chia hết cho 3
B= 2n ^ 3- 6n ^2 + 16 chia hết cho 12