\(\frac{3}{4}+\frac{5}{-12}\)bằng phân số nào? Vì sao?

b/...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

Giải hộ mk bài này nx nha!

Cho hình vẽ:

x o y z

a) kể tên góc nhọn

b) kể tên góc tù

c) kể tên cặp góc kề bù

nhanh nha!

a,\(\frac{1}{3}\),đặt tính ra

b,-1,đặt tính ra

c,x-1#0=>x#1

10 tháng 4 2019

d) \(\frac{x}{-9}=\left(\frac{2}{6}\right)^2\)

\(\Rightarrow\frac{x}{-9}=\frac{2}{6}.\frac{2}{6}\)

\(\Rightarrow\frac{x}{-9}=\frac{4}{36}\)

\(\Rightarrow\frac{x}{-9}=\frac{1}{9}\)

\(\Rightarrow\frac{-x}{9}=\frac{1}{9}\)

\(\Rightarrow-x=1\)

\(\Rightarrow x=1\)

e) \(\frac{a}{b}+\frac{3}{6}=0\)

\(\Rightarrow\frac{a}{b}=0-\frac{3}{6}\)

\(\Rightarrow\frac{a}{b}=0-\frac{1}{2}\)

\(\Rightarrow\frac{a}{b}=\frac{-1}{2}\)

\(\Rightarrow a=-1;b=2\)

3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
16 tháng 5 2017

Ta có :

\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.23^4.8^2}\)

\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^{10}}{3^8.\left(3^4\right)^4.23^4.8^2}\)

\(M=\frac{3^8.3^{15}.3^{10}}{3^8.3^{16}.23^4.8^2}\)

\(M=\frac{3^{33}}{3^{24}.23^4.8^2}\)

\(M=\frac{3^9}{23^4.8^2}\)

21 tháng 4 2019

Bài 1

a) \(P=\frac{6n+5}{2n-4}=\frac{6n-12+7}{2n-4}=3+\frac{7}{2n-4}\)

Để P là phân số thì \(\hept{\begin{cases}2n-4\ne7\\2n-4\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}n\ne\frac{11}{2}\\n\ne\frac{5}{2}\end{cases}}\)

Vậy...

b) \(P=\frac{6n+5}{2n-4}=3+\frac{7}{2n-4}\)

Để \(P\in Z\)thì \(\orbr{\begin{cases}2n-4=7\\2n-4=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=\frac{11}{2}\notin Z\\n=\frac{5}{2}\notin Z\end{cases}}}\)

Vậy không có giá trị n nào thuộc Z để P thuộc Z.

c) \(\left|2n-3\right|=\frac{5}{3}\)

Trường hợp: \(2n-3=\frac{5}{3}\Rightarrow n=\frac{7}{3}\)

\(P=\frac{6.\frac{7}{3}+5}{2.\frac{7}{3}-4}=\frac{19}{\frac{2}{3}}=\frac{57}{2}\)

Trường hợp: \(2n-3=-\frac{5}{3}\Rightarrow n=\frac{2}{3}\)

\(P=\frac{6.\frac{2}{3}+5}{2.\frac{2}{3}-4}=\frac{9}{\frac{-8}{3}}=\frac{27}{-8}\)

Bài 2

\(N=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^{10}.4.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)

    \(=\frac{2^{12}.3^{10}+5.2^{12}.3^{10}}{2^{12}.3^{12}-6^{11}}=\frac{6.2^{12}.3^{10}}{6^{12}-6^{11}}\)

    \(=\frac{2.3.2^{12}.3^{10}}{6.6^{11}-6^{11}}=\frac{2^{13}.3^{11}}{5.\left(2.3\right)^{11}}=\frac{2^{13}.3^{11}}{5.2^{11}.3^{11}}=\frac{4}{5}\)

Câu 1: Cho biểu thức: A=\(\frac{-5}{n-4}\)(n\(\inℤ\))a) Số ngyên n phải có điều kiện gì để A là phân sốb) Tìm các số nguyên n để A là một số nguyênCâu 2: a) Tìm x\(\inℤ\)biết: \(\frac{-1}{3}-1\le x\le\frac{1}{2}.3\)b) Tính tổng S=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)Câu 3: Cho hai góc kề bù \(\widehat{xOy}\)và\(\widehat{yOt}\), biết \(\widehat{xOy}\)=\(50^0\). Vẽ tia Oz và Ot sao...
Đọc tiếp

Câu 1: Cho biểu thức: A=\(\frac{-5}{n-4}\)(n\(\inℤ\))

a) Số ngyên n phải có điều kiện gì để A là phân số

b) Tìm các số nguyên n để A là một số nguyên

Câu 2: 

a) Tìm x\(\inℤ\)biết: \(\frac{-1}{3}-1\le x\le\frac{1}{2}.3\)

b) Tính tổng S=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}+\frac{1}{3^9}\)

Câu 3: Cho hai góc kề bù \(\widehat{xOy}\)\(\widehat{yOt}\), biết \(\widehat{xOy}\)=\(50^0\). Vẽ tia Oz và Ot sao cho \(\widehat{zOt}\)=\(80^0\)

a) Tính \(\widehat{yOt}\)

b) Tia Oy có phải là tia phân giác của \(\widehat{xOz}\)không? Vì sao?

Câu 4: 

Tìm các giá trị nguyên của x sao cho \(-1< \)\(\frac{x}{4}< \frac{1}{2}\)

Câu 5: Vẽ hai góc kề bù xOy và yOz sao cho xOy=60 độ

    a) Tính góc yOz

    b) Vẽ tia phân giác Ot của góc yOz.Tính góc xOt

    c) Vẽ tia Om là tia đối của tia Ot. Chứng tỏ Ox là tia phân giác của góc yOm

Câu 6:  M=\(\frac{1.2.4+2.4.8+4.8.16+8.16.32}{1.3.4+2.6.8+4.12.16+8.24.32}\)( bằng cách hợp lí)

 

 

0
13 tháng 2 2019

a) ta có : 3/4 = -x/4

=> -x = 3×4/4

=> -x =3

=> x = -3

Mặt khác: -x/4 =21/y

Với x = -3, ta có :

-3/4 = 21/y 

=> y = 21×4/-3 = -28

Lại có : 21/y = z/-80

Với y = -28, ta có:

22/-28 = z/-80

=> z = 21×-80/-28 = 60

Vậy x= -3; y = -28; z = 60

b) Ta có: y-2/2 = 18/-2

=> y -2 = 2×18/-2 

=> y-2 = -18 => y = -16

Lại có : x/3 = y-2/2

Với y = -16, ta có:

x/3 = -16-2/2

=> x/3 = -18/2

=> x = 3×-18/2 => x = -27

Vậy x = -27; y = -16

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)