Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
a, Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
\(\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(\Rightarrow y=2.3=6\)
\(\Rightarrow z=2.9=18\)
b, Ta có: \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{9}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60\)
\(\Rightarrow y=6.9=54\)
\(\Rightarrow z=6.12=72\)
c, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow x=3.9=27\)
\(\Rightarrow y=3.12=36\)
\(\Rightarrow z=3.20=60\)
Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12\cdot49}{49}=12\) ( do \(x+y+z=49\) )
\(\Rightarrow\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\) ( thỏa mãn )
Vậy : \(\left(x,y,z\right)=\left(18,16,15\right)\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
\(\Rightarrow\frac{12x+12y+12z}{18+16+15}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{12\left(x+y+z\right)}{49}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) có x + y + z = 49
\(\Rightarrow\frac{12\cdot49}{49}=12=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\hept{\begin{cases}2x=36\\3y=48\\4z=60\end{cases}\Rightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)
a) Ta có: x - 3y + 4z = 62
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)\(\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\begin{cases}\frac{x}{4}=2\Rightarrow x=2\cdot4=8\\\frac{y}{3}=2\Rightarrow y=2\cdot3=6\\\frac{z}{9}=2\Rightarrow z=2\cdot9=18\end{cases}\)
Vậy x = 8; y = 6 và z = 18
a) \(\left(\frac{1}{3}.x\right):\frac{2}{3}=4\frac{3}{8}\)
⇒ \(\left(\frac{1}{3}.x\right)=\frac{35}{8}.\frac{2}{3}\)
⇒ \(\frac{1}{3}.x=\frac{35}{12}\)
⇒ \(x=\frac{35}{12}:\frac{1}{3}\)
⇒ \(x=\frac{35}{4}\)
Vậy \(x=\frac{35}{4}.\)
c) \(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
⇒ \(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
⇒ \(\left|x-\frac{2}{5}\right|=2\)
⇒ \(\left[{}\begin{matrix}x-\frac{2}{5}=2\\x-\frac{2}{5}=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=2+\frac{2}{5}\\x=\left(-2\right)+\frac{2}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{12}{5}\\x=-\frac{8}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{12}{5};-\frac{8}{5}\right\}.\)
d) Ta có \(x:y:z=2:3:4\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}\) và \(x+y-2z=3.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}=\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=-1=>x=\left(-1\right).2=-2\\\frac{y}{3}=-1=>y=\left(-1\right).3=-3\\\frac{z}{4}=-1=>z=\left(-1\right).4=-4\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-2;-3;-4\right).\)
Còn câu e) thì bạn làm tương tự như câu trên nhé.
Chúc bạn học tốt!
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất của dãy tủ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\frac{x}{4}=2=>x=8\)
\(\frac{3y}{9}=2=>y=6\)
\(\frac{4z}{36}=2=>z=18\)
Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)
\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)
Theo đề ta có:
\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{x}{9}=\frac{y}{7};\frac{y}{7}=\frac{z}{3}\)
Hay: \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\frac{x}{9}=-3\)
\(\frac{y}{7}=-3\)
\(\frac{z}{3}=-3\)
=> x = -27
y = -21
x= -9
Bạn kiểm tra lại thử giúp mình nha! mấy bài sau bạn làm tương tự, nhớ tick đúng cho mình nha! Cảm ơn bạn!
a) Ta có: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{3y}{9}=\frac{4z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=2.4=8
3y=2.9=18 => y=6
4z=2.36=72 => z=18
Vậy x=8; y=6; z=18
b) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
=> x=3k; y=4k
Mà: xy=192
=> 3k.4k=192
=> 12k2=192
=> k2=16
=> k=\(\pm\)4
TH1: k=4
=> x=4.3=12; y=4.4=16
TH2: k=-4
=> x= -4.3=-12; y=-4,3.4=-16
Vậy (x;y) thõa mãn là (12;16);(-12;-16)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{62}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2.4\\y=2.3\\z=2.9\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=8\\y=6\\z=18\end{array}\right.\)
Vậy x = 8 ; y = 6 ; z = 18
b) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{xy}{3y}=\frac{192}{3y}\)
\(\Rightarrow\frac{y}{4}=\frac{192}{3y}\Rightarrow y.3y=192.4\)
\(\Rightarrow y^2.3=768\Rightarrow y^2=\frac{768}{3}=256\)
\(\Rightarrow y=\sqrt{256}=16;y=-\sqrt{256}=-16\)
Với y = 16 => x = \(\frac{192}{16}=12\)
Với y = -16 => x = \(\frac{192}{-16}=-12\)
Vậy x = 12 ; y = 16
hoặc x = -12 ; y = -16