Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a, Ta có: \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\). Mà theo đề bài: 5x + y - 2z = 28
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5x}{50}=\frac{x}{10}=2\Leftrightarrow x=20\\\frac{y}{6}=2\Leftrightarrow y=12\\\frac{2z}{42}=\frac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)(TMĐK)
Vậy: \(x=20;y=12;z=42\)
b, Ta có: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) ; \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\). Mà theo đề bài: 2x+3y - z = 124
=> Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2x}{30}=\frac{x}{15}=2\Leftrightarrow x=30\\\frac{3y}{60}=\frac{y}{20}=2\Leftrightarrow y=40\\\frac{z}{28}=2\Leftrightarrow z=56\end{matrix}\right.\)(TMĐK)
Vây:\(x=30;y=40;z=56\)
c, Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}\). Mà x.y = 54
\(\Rightarrow\frac{x.x}{2}=\frac{x.y}{3}=\frac{54}{3}=18\)
\(\Rightarrow\frac{x^2}{2}=18\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\}\)
Nếu \(x=6\Rightarrow\frac{6.y}{3}=18\Rightarrow6.y=54\Rightarrow y=9\)
Nếu \(x=-6\Rightarrow\frac{-6.y}{3}=18\Rightarrow-6.y=54\Rightarrow y=-9\)
Vậy: \(\left(x;y\right)\in\left\{\left(6;9\right),\left(-6;-9\right)\right\}\)
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
a) \(\frac{2}{3}=\frac{-10}{x}\)
\(\Rightarrow2x=-30\)
\(\Rightarrow x=-15\)
b) -2|x - 1| = \(\frac{-3}{4}\)
\(\Rightarrow\)|x - 1| = \(\frac{3}{8}\)
\(\Rightarrow\)x - 1 = \(\frac{3}{8}\)hoặc\(\frac{-3}{8}\)
\(\Rightarrow\)x = \(1\frac{3}{8}\)hoặc\(1\frac{-3}{8}\)
1)
a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)
⇒ 16 (x-7) = 6.23
⇒ 16x - 112 = 48
⇒ x = \(\frac{48+112}{16}\) = 10
Vậy: x = 10
b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125
⇒ -0,25x = -2,5 : 0,125 =-20
⇒ x = \(\frac{-20}{-0,25}\) = 80
Vậy: x = 80
d, |2,6−x|=1,5
Hoặc 2,6−x=1,5
⇒ x = 2,6 -1,5 = 1,1
Hoặc 2,6−x=-1,5
⇒ x = 2,6 - (-1,5) = 4,1
Vậy: x ∈ {1,1; 4,1}
e, |x|=2019 và x > 0
Vì x > 0 nên x = - 2019
2)
a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18
+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72
+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162
Vậy: x = -72, y = -162
Lát mình làm tiếp nha mn
a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)
=> \(\frac{x}{12}=\frac{y}{3}\) và \(x-y=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)
\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(48;12\right).\)
b)
\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
⇒ \(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
⇒ \(\frac{5}{3}x=\frac{1}{21}\)
⇒ \(x=\frac{1}{21}:\frac{5}{3}\)
⇒ \(x=\frac{1}{35}\)
Vậy \(x=\frac{1}{35}.\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
⇒ \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
⇒ \(x-\frac{1}{2}=\frac{1}{3}\)
⇒ \(x=\frac{1}{3}+\frac{1}{2}\)
⇒ \(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}.\)
Có 1 câu bạn đăng mình làm ở dưới rồi mà.
Chúc bạn học tốt!
a)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)
\(\)x/12=4 suy ra x=12.4=48
y/3=4 suy ra y=3.4 =12
b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
\(\frac{5}{3}x=\frac{1}{21}\)
\(x=\frac{1}{21}:\frac{5}{3}\)
\(x=\frac{1}{35}\)
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
\(\left|x-\frac{2}{5}\right|=2\)
suy ra x-2/5=2 hoac x-2/5=-2
\(x-\frac{2}{5}=2\)
\(x=\frac{12}{5}\)
\(x-\frac{2}{5}=-2\)
\(x=\frac{-8}{5}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
Câu 1:
\(3\left(x-1\right)=2\left(y-2\right)\Leftrightarrow3x-3=2y-4\Leftrightarrow3x=2y-1\)
\(4\left(y-2\right)=3\left(z-3\right)\Leftrightarrow4y-8=3z-9\Leftrightarrow4y=3z-1\)
Lại có:
\(3x=2y-1\Leftrightarrow6x=4y-2=3z-1-2=3z-3\)
\(\Rightarrow6x=4y-2=3z-3\)
\(\Rightarrow6x=3z-3\Leftrightarrow2x=z-1\)
\(\Rightarrow2x+3y-z=z-1+3y-z=3y-1=50\Leftrightarrow3y=51\Leftrightarrow y=17\)\(\Rightarrow\left\{{}\begin{matrix}x=11\\z=23\end{matrix}\right.\)
Câu 3:
\(\frac{a}{b}=\frac{8}{5}\Leftrightarrow\frac{a}{8}=\frac{b}{5}\Leftrightarrow\frac{1}{2}.\frac{a}{8}=\frac{1}{2}.\frac{b}{5}\Leftrightarrow\frac{a}{16}=\frac{b}{10}\) (1)
\(\frac{b}{c}=\frac{2}{7}\Leftrightarrow\frac{b}{2}=\frac{c}{7}\Leftrightarrow\frac{1}{5}.\frac{b}{2}=\frac{1}{5}.\frac{c}{7}\Leftrightarrow\frac{b}{10}=\frac{c}{35}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{16}=\frac{b}{10}=\frac{c}{35}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=16k\\b=10k\\c=35k\end{matrix}\right.\)
\(\Rightarrow a+b+c=16k+10k+35k=61k=61\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=16k=16\\b=10k=10\\c=35k=35\end{matrix}\right.\)
a) \(\left(\frac{1}{3}.x\right):\frac{2}{3}=4\frac{3}{8}\)
⇒ \(\left(\frac{1}{3}.x\right)=\frac{35}{8}.\frac{2}{3}\)
⇒ \(\frac{1}{3}.x=\frac{35}{12}\)
⇒ \(x=\frac{35}{12}:\frac{1}{3}\)
⇒ \(x=\frac{35}{4}\)
Vậy \(x=\frac{35}{4}.\)
c) \(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
⇒ \(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
⇒ \(\left|x-\frac{2}{5}\right|=2\)
⇒ \(\left[{}\begin{matrix}x-\frac{2}{5}=2\\x-\frac{2}{5}=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=2+\frac{2}{5}\\x=\left(-2\right)+\frac{2}{5}\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{12}{5}\\x=-\frac{8}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{12}{5};-\frac{8}{5}\right\}.\)
d) Ta có \(x:y:z=2:3:4\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}\) và \(x+y-2z=3.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}=\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=-1=>x=\left(-1\right).2=-2\\\frac{y}{3}=-1=>y=\left(-1\right).3=-3\\\frac{z}{4}=-1=>z=\left(-1\right).4=-4\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-2;-3;-4\right).\)
Còn câu e) thì bạn làm tương tự như câu trên nhé.
Chúc bạn học tốt!