Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A=20+21+22+23+...+22010A=20+21+22+23+...+22010
3A=2+22+23+24+...+220113A=2+22+23+24+...+22011
=> 2A=3A−A=(21+22+...+22011)−(20+21+...+22010)
=>2A=22011−12A=22011−1
=>A=22011−12A=22011−12
=> A < B ( vì 22011−12<2201122011−12<22011 )
\(A=\left(\frac{-\left(x-3\right)}{\left(x+3\right)}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right).\left(\frac{x+3}{3x^2}\right)\)
\(=\left(-1+\frac{x}{x+3}\right)\left(\frac{x+3}{3x^2}\right)=\frac{-3}{\left(x+3\right)}.\frac{\left(x+3\right)}{3x^2}=\frac{-1}{x^2}\)
\(A< 0\Rightarrow\frac{-1}{x^2}< 0\Rightarrow-1< 0\) (luôn đúng)
Vậy \(x\ne0;x\ne\pm3\) thì \(A< 0\)
Với \(x\ne0;x\ne-1\)
\(A=\frac{x}{x+1}-\frac{2}{x}+\frac{2}{x^2+x}\)
\(=\frac{x^2-2x-2+2}{x\left(x+1\right)}=\frac{x^2-2x}{x\left(x+1\right)}=\frac{x-2}{x+2}\)
Ta có : \(\left|A\right|=\left|\frac{x-2}{x+2}\right|=\frac{1}{2}\)
* TH1 : \(\frac{x-2}{x+2}=\frac{1}{2}\Rightarrow2x-4=x+2\Leftrightarrow x=6\)( tm )
* TH2 : \(\frac{x-2}{x+2}=-\frac{1}{2}\Rightarrow2x-4=-x-2\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
- A =\(\frac{x^2+3+2x-6-x-3}{x^2-9}\)
- A =\(\frac{x^2+x-6}{x^2-9}\)
- A = \(\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)}\)
- A = \(\frac{x-2}{x-3}\)