\(\frac{n+9}{n-2}\) 
Tìm n \(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

\(A=\frac{n+9}{n-2}=1+\frac{11}{n-2}\)

Ta có \(1+\frac{11}{n-2}\ge1\forall n\ge2\)

Dấu = xảy ra \(\Leftrightarrow n-2=0\Rightarrow n=2\)

Vậy \(A_{min}=1\Leftrightarrow n=2\)

6 tháng 5 2020

Bg

Để phân số A = \(\frac{n+9}{n-2}\)nhỏ nhất (với n \(\inℤ\)) thì n + 9 (tử số) phải nhỏ nhất và n - 2 (mẫu số) lớn nhất. (Điều kiện phụ: A là phân số âm thì mới nhỏ nhất được)

Xét tử số n + 9 phải nhỏ nhất:

Để n + 9 nhỏ nhất thì n + 9 phải là số âm và A cũng âm.

=> n < -10 thì n + 9 âm

Nhưng nếu n < -10 thì n - 2 cũng âm -> Phân số A là phân số dương (Điều kiện phụ tỏa sáng mặc dù không phải nhân vật chính:))

=> Để A là phân số âm thì tử số phải là số dương lớn nhất và mẫu số phải là số âm lớn nhất.

=> n - 2 = -1  (-1 là số âm lớn nhất)

     n      = -1 + 2

     n      = 1

Lúc đó thì tử số n + 9 = 1 + 9 = 10 (thỏa mãn)

Vậy n = 1 thì A nhỏ nhất (A sẽ là \(\frac{10}{-1}=-10\)(nhỏ nhất)

20 tháng 3 2021

n có giá trị nhỏ nhất khi và chỉ khi 3n+2 có giá trj lớn nhất cứ theo thé mà làm bài

20 tháng 3 2021

Ta có: \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)

Để \(A_{min}\)\(\Rightarrow\)\(2+\frac{5}{3n+2}min\)mà \(\hept{\begin{cases}2>0\\5>0\\n\inℤ\end{cases}}\)

\(\Rightarrow\)\(3n+2\)lớn nhất nhưng nguyên âm

\(\Rightarrow\)\(3n+2=-1\)\(\Leftrightarrow\)\(n=-1\)\(\left(TM\right)\)

Vậy để \(A_{min}\)\(\Leftrightarrow\)\(n=-1\)

24 tháng 3 2018

\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

đến đây bn liệt kê ước của 3 r` lm tiếp!

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2 = 1

=> n = 3

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

24 tháng 3 2018

a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
9 tháng 7 2019

\(A=\frac{6-3n}{n}=\frac{6}{n}-3\)

\(\Rightarrow A\in Z\Leftrightarrow\frac{6}{n}\in Z\Rightarrow n\inƯ_6\)

\(\Rightarrow...\)

\(B=\frac{7+14n}{2n}=\frac{7}{2n}+7\)

\(B\in Z\Leftrightarrow\frac{7}{2n}\in Z\Rightarrow2n\inƯ_7\)

\(\Rightarrow...\)

\(c,\frac{3-21n}{3n}=\frac{3}{3n}-7=\frac{1}{n}-7\)

\(C\in Z\Leftrightarrow\frac{1}{n}\in Z\Leftrightarrow n\in\left\{\pm1\right\}\)