\(\frac{3x+2}{2}\)-\(\frac{3x+1}{6}\)= 2x + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)

<=> 3(3x + 2) - (3x + 1) = 12x + 10

<=> 9x + 6 - 3x - 1 = 12x + 10

<=> 6x - 12x = 10 - 5

<=> -6x = 5

<=> x = -5/6

Vậy S = {-5/6}

30 tháng 4 2020

b) ĐKXĐ: x \(\ne\)3 và x \(\ne\)-1

Ta có: \(\frac{x}{2x-6}+\frac{x}{2x+2}=\frac{-2x}{\left(3-x\right)\left(x+1\right)}\)

<=> \(\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x-3\right)\left(x+1\right)}\)

=> x2 + x + x2 - 3x = 4x

<=> 2x2 - 2x - 4x = 0

<=> 2x2 - 6x = 0

<=> 2x(x - 3) = 0

<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)

Vậy S = {0}

12 tháng 3 2020

a) 0,75x(x + 5) = (x + 5)(3 - 1,25x)

<=> 0,75x(x + 5) - (x + 5)(3 - 1,25x) = (x + 5)(3 - 1,25x) - (x + 5)(3 - 1,25x)

<=> 0,75x(x + 5) - (x + 5)(3 - 1,25x) = 0

<=> (x + 5)(0,75 + 1,25x - 3) = 0

<=> (x + 5)(2x - 3) = 0

<=> x + 5 = 0 hoặc 2x - 3 = 0

<=> x = -5 hoặc x = 3/2

b) 4/5 - 3 = 1/5x(4x - 15)

<=> -11/5 = x(4x - 15)/5

<=> -11 = x(4x - 15)

<=> -11 = 4x2 - 15x

<=> 11 + 4x2 - 15x = 0 

<=> 4x2 - 4x - 11x + 11 = 0

<=> 4x(x - 1) - 11(x - 1) = 0

<=> (4x - 11)(x - 1) = 0

<=> 4x - 11 = 0 hoặc x - 1 = 0

<=> x = 11/4 hoặc x = 1

c) \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

<=> 12x - 36 - 2(x - 3)(2x - 5) = 3(x - 3)(3 - x)

<=> 12x - 36 - 4x2 + 10x + 12x - 30 = 9x - 3x2 - 27 + 9x

<=> 34x - 66 - 4x2 = 18x - 3x2 - 27

<=> 34x - 66 - 4x2 - 18x + 3x2 + 27 = 0

<=> 16x - 39x - x= 0

<=> x2 - 16x + 39x = 0

<=> (x - 3)(x - 13) = 0

<=> x - 3 = 0 hoặc x - 13 = 0

<=> x = 3 hoặc x = 13

d) \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

<=> (3x + 1)(3x - 2) + 15(3x + 1) = 2(2x + 1)(3x + 1) + 6x(3x + 1)

<=> 9x2 - 6x + 3x - 2 + 45x + 15 = 12x3 + 4x + 6x + 2 + 18x2 + 6x

<=> 9x2 + 42x + 13 = 30x2 + 16x + 2

<=> 9x2 + 42x + 13 - 30x2 - 16x - 2 = 0

<=> -21x2 + 26x + 11 = 0

<=> 21x2 - 26x - 11 = 0

<=> 21x2 + 7x - 33x - 11 = 0

<=> 7x(3x + 1) - 11(3x + 1) = 0

<=> (7x - 11)(3x + 1) = 0

<=> 7x - 11 = 0 hoặc 3x + 1 = 0

<=> x = 11/7 hoặc x = -1/3

7 tháng 12 2019

a) \(\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{\left(x-7\right)\left(x+7\right)}{2x+1}.\frac{-3}{x-7}=\frac{-3\left(x-7\right)\left(x+7\right)}{\left(2x+1\right)\left(x-7\right)}=\frac{-3\left(x+7\right)}{2x+1}\)

\(=\frac{-3x-21}{2x+1}\)

b) \(\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{\left(2-3x\right)^3}=\frac{x\left(3x-2\right)}{x^2-1}.\frac{x^4-1}{\left(3x-2\right)^3}=\frac{x\left(3x-2\right)}{x^2-1}.\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(3x-2\right)^3}\)

\(=\frac{x\left(3x-2\right)\left(x^2-1\right)\left(x^2+1\right)}{\left(x^2-1\right)\left(3x-2\right)^3}=\frac{x\left(x^2+1\right)}{\left(3x-2\right)^2}=\frac{x^3+x}{\left(3x-2\right)^2}\)

7 tháng 12 2019

\(\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{\left(x-7\right)\left(x+7\right)}{2x+1}.\left(-\frac{3}{x-7}\right)=\frac{-3\left(x+7\right)}{2x+1}=\frac{-3x-21}{2x+1}\)

14 tháng 3 2020

a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> 1 - x + 3(x + 1) = 2x + 3

<=> 1 - x + 3x + 3 = 2x + 3

<=> 1 - x + 3x + 3 - 2x = 3

<=> 4 = 3 (vô lý)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)

<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30

<=> -x + 4x2 - 14 = 15x - 30

<=> x - 4x2 + 14 = 15x - 30 

<=> x - 4x2 + 14 + 15x - 30 = 0

<=> 16x - 4x2 - 16 = 0

<=> 4(4x - x2 - 4) = 0

<=> -x2 + 4x - 4 = 0

<=> x2 - 4x + 4 = 0

<=> (x - 2)2 = 0

<=> x - 2 = 0

<=> x = 2 (ktm)

=> pt vô nghiệm 

c) xem bài 4 ở đây: Câu hỏi của gjfkm

d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)

\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)

<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)

<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10

<=> 2x2 - 14 = 2x2 + x - 10

<=> 2x2 - 14 - 2x2 = x - 10

<=> -14 = x - 10

<=> -14 + 10 = x

<=> -4 = x

<=> x = -4

30 tháng 3 2019

\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)

\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)

30 tháng 3 2019

\(b,\left(2x+1\right)^2=\left(x-1\right)^2\Rightarrow\orbr{\begin{cases}2x+1=x-1\\2x+1=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}}\)

20 tháng 3 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)

=> 2x=0

<=> x=0

Vậy x=0

20 tháng 3 2020

+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)

      \(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)

       \(\Rightarrow x^2+x+x^2-3x=4x\)

      \(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)

      \(\Leftrightarrow2x^2-6x=0\)

      \(\Leftrightarrow2x.\left(x-6\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,6\right\}\)

+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)

       \(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)

        \(\Rightarrow x^2+x+1+2x-2=3x^2\)

      \(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)

      \(\Leftrightarrow-2x^2+3x-1=0\)

      \(\Leftrightarrow2x^2-3x+1=0\)

      \(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

29 tháng 4 2019

Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?

a. \(x+8>3x-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow-x\le2\)

\(\Leftrightarrow x\ge2\)

c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)

d. \(2\left(3x-1\right)-2x< 2x+1\)

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow2x< 3\)

\(\Leftrightarrow x< \frac{3}{2}\)

e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)

f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)

g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow2x+2>2x-1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-25\)

\(\Leftrightarrow x>-\frac{25}{2}\)

i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow x+5-4x-2\le3x+9\)

\(\Leftrightarrow-6x\le6\)

\(\Leftrightarrow x\ge-1\)

j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow10x+8-2x+1\ge48\)

\(\Leftrightarrow8x\ge39\)

\(\Leftrightarrow x\ge\frac{39}{8}\)

30 tháng 4 2019

Bạn tự biểu diễn nghiệm trên trục số nhé!

a) \(x+8>3x-1\)

\(\Leftrightarrow x-3x>-8-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b) 3x − (2x+5) ≤ (2x−3)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow3x-2x+2x\le5-3\)

\(\Leftrightarrow3x\le2\)

\(\Leftrightarrow x\le\frac{2}{3}\)

c) (x − 3) (x + 3) < x (x + 2) + 3

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow x^2-x^2+2x< 9+3\)

\(\Leftrightarrow2x< 12\)

\(\Leftrightarrow x< 6\)

d) 2 (3x − 1) − 2x < 2x + 1

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow6x-2x+2x< 2+1\)

\(\Leftrightarrow6x< 3\)

\(\Leftrightarrow x< \frac{3}{6}\)

e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-6x+5x>-9+10\)

\(\Leftrightarrow-x>1\)

\(\Leftrightarrow x< -1\)

f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow x\ge0\)

g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)

\(\Leftrightarrow2x+2>2x+1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-21\)

\(\Leftrightarrow x>\frac{-21}{2}\)

i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)

\(\Leftrightarrow x+5-4x+2\le3x+9\)

\(\Leftrightarrow-3x-x+4x\le9-5-2\)

\(\Leftrightarrow x\le2\)

j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)

\(\Leftrightarrow10x+8-2x-1\ge48\)

\(\Leftrightarrow10x-2x\ge48-8+1\)

\(\Leftrightarrow8x\ge41\)

\(\Leftrightarrow x\ge\frac{41}{8}\)

Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^

16 tháng 8 2019

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)

Vậy pt có vô số nghiệm

\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)

Mấy câu rút gọn bạn quy đồng nha

16 tháng 8 2019

bạn có thể giải ra giúp mik đc ko?