Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)
\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)
\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)
Suy ra: \(12x-45-12x^2+45x=0\)
\(\Leftrightarrow-12x^2+57x-45=0\)
\(\Leftrightarrow-12x^2+12x+45x-45=0\)
\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)
\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)
mà \(-3\ne0\)
nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)
b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)
Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)
\(\Leftrightarrow-x^2+16x-39=0\)
\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)
\(\Leftrightarrow x^2-13x-3x+39=0\)
\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)
Vậy: Tập nghiệm S={3;13}
c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)
\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)
\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)
\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)
Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)
\(\Leftrightarrow-21x^2+26x+11=0\)
\(\Leftrightarrow-21x^2-7x+33x+11=0\)
\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)
Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?
a. \(x+8>3x-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow-x\le2\)
\(\Leftrightarrow x\ge2\)
c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)
d. \(2\left(3x-1\right)-2x< 2x+1\)
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow2x< 3\)
\(\Leftrightarrow x< \frac{3}{2}\)
e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)
f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)
g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow2x+2>2x-1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-25\)
\(\Leftrightarrow x>-\frac{25}{2}\)
i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow x+5-4x-2\le3x+9\)
\(\Leftrightarrow-6x\le6\)
\(\Leftrightarrow x\ge-1\)
j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow10x+8-2x+1\ge48\)
\(\Leftrightarrow8x\ge39\)
\(\Leftrightarrow x\ge\frac{39}{8}\)
Bạn tự biểu diễn nghiệm trên trục số nhé!
a) \(x+8>3x-1\)
\(\Leftrightarrow x-3x>-8-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b) 3x − (2x+5) ≤ (2x−3)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow3x-2x+2x\le5-3\)
\(\Leftrightarrow3x\le2\)
\(\Leftrightarrow x\le\frac{2}{3}\)
c) (x − 3) (x + 3) < x (x + 2) + 3
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2+2x< 9+3\)
\(\Leftrightarrow2x< 12\)
\(\Leftrightarrow x< 6\)
d) 2 (3x − 1) − 2x < 2x + 1
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow6x-2x+2x< 2+1\)
\(\Leftrightarrow6x< 3\)
\(\Leftrightarrow x< \frac{3}{6}\)
e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-6x+5x>-9+10\)
\(\Leftrightarrow-x>1\)
\(\Leftrightarrow x< -1\)
f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow x\ge0\)
g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)
\(\Leftrightarrow2x+2>2x+1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-21\)
\(\Leftrightarrow x>\frac{-21}{2}\)
i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)
\(\Leftrightarrow x+5-4x+2\le3x+9\)
\(\Leftrightarrow-3x-x+4x\le9-5-2\)
\(\Leftrightarrow x\le2\)
j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)
\(\Leftrightarrow10x+8-2x-1\ge48\)
\(\Leftrightarrow10x-2x\ge48-8+1\)
\(\Leftrightarrow8x\ge41\)
\(\Leftrightarrow x\ge\frac{41}{8}\)
Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html
Mình cảm ơn trước nhaa
a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
<=> 3(3x + 2) - (3x + 1) = 12x + 10
<=> 9x + 6 - 3x - 1 = 12x + 10
<=> 6x - 12x = 10 - 5
<=> -6x = 5
<=> x = -5/6
Vậy S = {-5/6}
b) ĐKXĐ: x \(\ne\)3 và x \(\ne\)-1
Ta có: \(\frac{x}{2x-6}+\frac{x}{2x+2}=\frac{-2x}{\left(3-x\right)\left(x+1\right)}\)
<=> \(\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x-3\right)\left(x+1\right)}\)
=> x2 + x + x2 - 3x = 4x
<=> 2x2 - 2x - 4x = 0
<=> 2x2 - 6x = 0
<=> 2x(x - 3) = 0
<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)
Vậy S = {0}