K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Ta có: \(\frac{-3}{1.2.3}+\frac{-3}{2.3.4}+\frac{-3}{3.4.5}+...+\frac{-3}{18.19.20}\)

          \(=\frac{-3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}\right)\)

          \(=\frac{-3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

            \(=\frac{-3}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{-3}{2}.\frac{189}{380}=\frac{-567}{760}\)

              

12 tháng 7 2017

B= 1/ 1.2.3 + 1/ 2.3 4 + 1/ 3.4.5 + .... + 1/ 18.19.20

Ta có:

1/ 1.2 - 1/ 2.3 = 2/ 1.2.3

1/ 2.3 - 1/3.4 = 2/ 2.3.4

Từ đó Ta có: B = 1/2 . ( 2/ 1.2.3 + 2/ 2,3.4 + ... + 2/ 18. 19. 20 )

= 1/2 .( 1/ 1.2 – 1/ 2.3 + 1/ 2.3 - .....- 1/19.20)

= 1/2. ( 1/ 1.2 – 1/ 19.20 ) = 1/ 2 . 189/380 = 189/760

13 tháng 7 2017

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+....+\frac{1}{18\cdot19\cdot20}\)

\(B=\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{20-18}{18\cdot19\cdot20}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{18\cdot19\cdot20}\)

\(2B=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\)

\(2B=\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\)

\(\Rightarrow B=\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\div2=\frac{189}{380}\div2=\frac{189}{760}\)

1 tháng 3 2018

\(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(E=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(E=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\left(đpcm\right)\)

1 tháng 3 2018

Ta có : 

\(E=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)

\(E=\frac{1}{2}-\frac{1}{380}=\frac{189}{380}< \frac{95}{380}=\frac{1}{4}\)

Vậy \(E< \frac{1}{4}\)

Chúc bạn học tốt ~

9 tháng 7 2017

3/ \(2\left(x-3\right)-3\left(1-2x\right)=4+4\left(1-x\right)\)

\(\Leftrightarrow2x-6-3+6x=4+4-4x\)

\(\Leftrightarrow8x-9=8-4x\)

\(\Leftrightarrow8x+4x=8+9\)

\(\Leftrightarrow12x=17\)

\(\Leftrightarrow x=\dfrac{17}{12}\)

Vậy \(x=\dfrac{17}{12}\)

4/ \(\dfrac{x-2}{2}-\dfrac{1+x}{3}=\dfrac{4-3x}{4}-1\)

\(\Leftrightarrow6\left(x-2\right)-4\left(1+x\right)=3\left(4-3x\right)-12\)

\(\Leftrightarrow6x-12-4-4x=12-9x-12\)

\(\Leftrightarrow6x-4-4x=12-9x\)

\(\Leftrightarrow2x-4=12-9x\)

\(\Leftrightarrow2x+9x=12+4\)

\(\Leftrightarrow11x=16\)

\(\Leftrightarrow x=\dfrac{16}{11}\)

Vậy \(x=\dfrac{16}{11}\)

18 tháng 8 2018

Tính nhanh : 

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{18.19}+\frac{2}{19.20}\)

\(=2.\left(\frac{1}{1.2}+\frac{2}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2.\left(1-\frac{1}{20}\right)\)

\(=2.\left(\frac{20}{20}-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}\)

\(=\frac{19}{10}\)

18 tháng 8 2018

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{18.19}+\frac{2}{19.20}\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)

\(=2.\left(1-\frac{1}{20}\right)\)

\(=2.\frac{19}{20}\)

\(=\frac{19}{10}\)

27 tháng 2 2016

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}=\frac{1^2.2^2.3^2...9^2}{1.2.2.3.3.4.4...9.10}=\frac{1.2^2.3^2...9^2}{1.2^2.3^2.4^2...10^2}=\frac{1}{10^2}=\frac{1}{100}\)

27 tháng 2 2016

Ra 1/10 đó bạn

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

28 tháng 1 2019

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)

11 tháng 5 2020

ảnh đại diện đẹp thế lấy ở đâu