Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
a) mình lười làm
b)=\(\frac{\left(2a+9\right)+\left(5a+17\right)-\left(3a\right)}{a+3}=\frac{\left(2a+5a-3a\right)+\left(9+17\right)}{a+3}=\frac{4a+26}{a+3}\)
Để Tổng ban đầu nguyên thì 4a+26 phải chia hết cho a+3
=>4(a+3)+14 chia hết cho a+3
Mà 4(a+3) chia hết cho a+3
=>14 chia hết cho a+3
=> a+3 thuộc Ư(14)={1;2;7;14;-1;-2;-7;-14}
=>a thuộc {-2;-1;4;11;-4;-5;-10;-17}
1) Tính C
\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)
\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)
Ta thấy khi quy đồng mẫu số các phân số của tổng trên, mẫu chứa lũy thừa của 2 với số mũ lớn nhất là 24, như vậy, sau khi quy đồng, các phân số đều có tử chẵn chỉ có phân số 1/16 có tử lẻ
=> tổng trên có tử lẻ, mẫu chẵn, không là số nguyên ( đpcm)
Ta có: \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Do: \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{2}{11}>\frac{2}{12}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{2}{12}.6=1\) \(\left(1\right)\)
Lại có: \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)
\(\Rightarrow E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{2}{6}.6=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow1< E< 2\)
\(\Rightarrow E\notin Z\)\(\left(đpcm\right)\)
Chúc bạn học tốt !!!
a) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{a+b}{2ab}\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\Rightarrow ac+bc=2ab=ac-ab=ab-bc=a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
b) \(\text{Để n nguyên thì P phải nguyên} \)
\(\Rightarrow\frac{2n-1}{n-1}=\frac{2n-2+1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}=2+\frac{1}{n-1}\Rightarrow\frac{1}{n-1}\in Z\)
=> n-1 là ước của 1
=> n-1={-1;1)
=> n={0;2)
c) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\)\(\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
tổng của các phân số cùng mẫu luôn có giá trị của tử thấp hơn giá trị của mẫu => tử không bằng mẫu => A không nguyên
Ta có :
\(A>\frac{1}{4}+\frac{1}{5}+\frac{1}{15}+.....+\frac{1}{15}=\frac{1}{4}+\frac{1}{5}+\frac{10}{15}>1\)
\(A< \frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+.....+\frac{1}{7}=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{9}{7}< 2\)
\(\Rightarrow1< A< 2\)
\(\Rightarrow A\)không phải là số nguyên
Vậy A không phải là số nguyên