\(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)

chứng minh :...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)

\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)

\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)

\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)

\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)

Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)

Nên : \(A< \frac{1}{3}\)

5 tháng 11 2018

Ta thấy : \(\frac{1}{2^2}< \frac{1}{3}\)

             \(\frac{1}{2^4}< \frac{1}{3}\)

                 ...

              \(\frac{1}{2^{100}}< \frac{1}{3}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}< \frac{1}{3}\)

Vậy \(A< \frac{1}{3}\)

Chúc bạn học tốt :>

5 tháng 11 2018

A.\(4\)=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

=> 4A-A=1-\(\frac{1}{2^{100}}\)

=> A=\(\frac{1}{3}\left(1-\frac{1}{2^{100}}\right)=\frac{1}{3}-\frac{1}{3}.\frac{1}{2^{100}}< \frac{1}{3}\)

5 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{50}\right)< \frac{1}{4}.2=2\)

=> \(A< 2\left(đpcm\right)\)

6 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{50}\right)< \frac{1}{4}.2=2\)

\(A< 2\left(đpcm\right)\)

1 tháng 11 2018

Ta có  4A=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

Trừ 4A cho A ta được 

3A = \(1-\frac{1}{2^{100}}\)=> 3A <1 => A<1/3 (đpcm)

Chúc bạn học tốt 

1 tháng 11 2018

Ta có :\(A=\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(2A=\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{100}}\)

Lại có :

\(\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)

Vì \(\frac{1}{2^{100}}< \frac{1}{6}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2^{100}}>\frac{1}{2}-\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{3}\)

Vậy \(A>\frac{1}{3}\)(ĐPCM)

3 tháng 4 2018

Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta có : 

\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)

\(\Rightarrow\)\(A>\frac{1}{6}\) \(\left(1\right)\)

Lại có : 

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

\(\Rightarrow\)\(A< \frac{1}{4}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{1}{6}< A< \frac{1}{4}\) ( đpcm ) 

Vậy \(\frac{1}{6}< A< \frac{1}{4}\)

Chúc bạn học tốt ~ 

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OKjhh

14 tháng 8 2017

ok, ta co  \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

\(A< \frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{99\cdot100}\)

\(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+..+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}\)

\(A< \frac{1}{4}\)

Lai co  \(A>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{100\cdot101}=\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+..+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}\)

\(A>\frac{1}{6}\)

9 tháng 1 2016

this sentence extremely easy