K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\frac{1}{2}\\x\ne\pm1\end{cases}}\)   

 \(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(\Leftrightarrow A=\frac{-x-1+2x-2+5-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(\Leftrightarrow A=\frac{2}{1-2x}\)

b) Để |A| = A

\(\Leftrightarrow A>0\)

\(\Leftrightarrow\frac{2}{1-2x}>0\)

Vì 2 > 0

\(\Leftrightarrow1-2x>0\)

\(\Leftrightarrow1>2x\)

\(\Leftrightarrow x< \frac{1}{2}\)

Vậy để \(\left|A\right|=A\Leftrightarrow x< \frac{1}{2}\)

13 tháng 3 2020

\(A=\left(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\pm1;x\ne\frac{1}{2}\right)\)

24 tháng 7 2021

\(ĐKXĐ:x\ne2;x\ne-2;x\ne0\)

\(a,P=\left(\frac{-1}{2-x}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)

\(P=\left(\frac{-2-x+2-x-2x}{\left(2-x\right)\left(2+x\right)}\right)\left(\frac{2-x}{x}\right)\)

\(P=\frac{-4x}{\left(2-x\right)\left(2+x\right)}\frac{2-x}{x}\)

\(P=\frac{-4}{2+x}\)

\(b,P=\frac{-4}{2+x}=\frac{1}{2}\)

\(2+x=-8\)

\(x=-10\)

\(c,P=-\frac{4}{2+x}\)

\(< =>-4⋮x+2\)

lập bảng ra thì bạn ra đc \(x=\left\{2;-1;-3;-6\right\}\)

24 tháng 7 2021

a)\(P=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)

\(P=\left(\frac{1}{x-2}+\frac{2x}{\left(x+2\right)\left(x-2\right)}+\frac{1}{2+x}\right).\frac{2-x}{x}\)

\(P=\frac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)

\(P=\frac{4x}{\left(x-2\right)\left(x+2\right)}.\frac{2-x}{x}\)

\(P=\frac{-4}{x+2}\)

b) Để P=1/2

\(\Rightarrow-\frac{4}{x+2}=\frac{1}{2}\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

c) Để P nhận GT nguyên

\(\Rightarrow\left(x+2\right)\inƯ_{\left(-4\right)}\)

\(\Rightarrow\left(x+2\right)\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow x=\left\{-3;-1;-4;0;-6;2\right\}\)

#H

27 tháng 2 2020

ĐKXĐ \(x\ne0;x\ne1;x\ne-1\)

\(A=\frac{\left(x+1+1-x\right)}{\left(1-x^2\right)-\frac{5-x}{1-x^2}}:\frac{\left(1-2x\right)}{x^2-1}\)

\(A=\frac{\left(x-3\right)}{\left(1-x^2\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3-x\right)}{\left(x^2-1\right)}:\frac{\left(1-2x\right)}{\left(x^2-1\right)}\)

\(A=\frac{\left(3x-2\right)}{1-2x}\)

27 tháng 2 2020

\(a,ĐKXĐ:x\ne\pm1;x\ne\frac{1}{2}\)

\(A=\left(\frac{1}{x-1}+\frac{2}{x+1}-\frac{5-x}{1-x^{^2}}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{1}{x-1}+\frac{2}{x+1}+\frac{5-x}{\left(x-1\right)\left(x+1\right)}\right):\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}:\frac{1-2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{2x+4}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\frac{2x+4}{1-2x}\)

\(b,Vớix\ne\pm1;x\ne\frac{1}{2}\)ta có \(A=\frac{2x+4}{1-2x}=\frac{-1\left(1-2x\right)+5}{1-2x}=-1+\frac{5}{1-2x}\)

Với x thuộc Z để A nguyên thì \(5⋮1-2x\Rightarrow1-2x\inƯ\left\{5\right\}=\left\{\pm1;\pm5\right\}\)

Với 1-2x=1 => x= 0(TMĐKXĐ)

với 1-2x=-1 => x=1(loại)

với 1-2x=5 => x=-2(tmđkxđ)

với 1-2x=-5 => x=3(tmđkxđ)

Vậy với \(x\in\left\{0;-2;-3\right\}\)thì A nguyên

29 tháng 12 2017

\(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)

\(E=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x-2}{\left(x+1\right)^2}\right).\left(\frac{\left(1-x\right)\left(1+x\right)}{2}\right)^2\)

\(E=\left(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)^2}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}\right).\frac{\left(1-x\right)^2\left(x+1\right)^2}{4}\)

\(E=\frac{\left(x-2\right)\left(x+1-x+1\right)}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2\left(x+1\right)^2}{4}\)

\(E=\frac{2\left(x-2\right)\left(x-1\right)}{4}\)

\(E=\frac{\left(x-2\right)\left(x-1\right)}{2}\)

29 tháng 12 2017

a) \(E=\left(\frac{x-2}{x^2-1}-\frac{x+2}{x^2+2x+1}\right).\left(\frac{1-x^2}{2}\right)^2\)

   \(=\left(\frac{x-2}{\left(x-1\right)\left(x+1\right)}-\frac{x+2}{\left(x+1\right)^2}\right).\frac{\left(x^2-1\right)^2}{4}\)

\(=\left(\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)

\(=\left(\frac{x^2-3x+2-x^2-3x-2}{\left(x-1\right)^2\left(x+1\right)}\right).\frac{\left(x^2-1\right)^2}{4}\)

\(=\frac{-6x.\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+1\right).4}=\frac{-3x\left(x^2-1\right)^2}{\left(x^2-1\right)\left(x-1\right).4}=\frac{-3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right).4}\)\(=\frac{-3x\left(x+1\right)}{4}\)

b) Muốn    \(\frac{E-4}{5}=x\) thì   \(\frac{\frac{-3x\left(x+1\right)}{4}-4}{5}=x\)

\(\Rightarrow\frac{\frac{-3x^2\left(x+1\right)}{4}-\frac{16}{4}}{5}=x\)

\(\Rightarrow\frac{-3x^3-3x^2-16}{4}=5x\)

\(\Rightarrow-3x^3-3x^2-16=20x\)

\(\Rightarrow-3x^3-3x^2-16=20x\).....................................................................

17 tháng 7 2021

a,  \(A=\frac{x^2+3x-x+3-x^2+1}{x^2-9}\)\(.\frac{x+3}{2}\)            \(\left(x\ne3;-3\right)\)

\(A=\frac{2x+4}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2}\)\(=\frac{2\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2}\)\(=\frac{x+2}{x-3}\)

b, để \(A\in Z\Rightarrow\hept{\begin{cases}x+2⋮x-3\\x-3⋮x-3\end{cases}}\)\(\Rightarrow x+2-x+3=5⋮x-3\)\(\leftrightarrow x+3\in\left(1;5;-1;-5\right)\)

                                                                                                                              \(\leftrightarrow x\in\left(-2;2;-4;-8\right)\)

13 tháng 12 2016

ban nen tu tinh se tot hon

 

14 tháng 12 2016

mk tính mãi k ra mới hỏi chứ khocroi sắp thi hkì r chỉ jùm vs ik

11 tháng 3 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\left(\frac{\left(1+x\right)}{\left(1+x\right)\left(1-x\right)}+\frac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\)

\(=\frac{1+x+2-2x-5+x}{1-x^2}:\frac{2x-1}{1-x^2}\)

\(=\frac{8}{1-x^2}.\frac{1-x^2}{2x-1}=\frac{8}{2x-1}\)

b) Để A nguyên thì \(\frac{8}{2x-1}\inℤ\)

\(\Leftrightarrow8⋮2x-1\Rightarrow2x-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Mà dễ thấy 2x - 1 lẻ nên\(2x-1\in\left\{\pm1\right\}\)

+) \(2x-1=1\Rightarrow x=1\left(ktmđkxđ\right)\)

+) \(2x-1=-1\Rightarrow x=0\left(tmđkxđ\right)\)

Vậy x nguyên bằng 0 thì A nguyên

c) \(\left|A\right|=A\Leftrightarrow A\ge0\)

\(\Rightarrow\frac{8}{2x-1}\ge0\Rightarrow2x-1>0\Leftrightarrow x>\frac{1}{2}\)

Vậy \(x>\frac{1}{2}\)thì |A| = A

11 tháng 3 2020

a, \(A=\left(\frac{1}{1-x}+\frac{2}{1+x}-\frac{5-x}{1-x^2}\right):\frac{1-2x}{x^2-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

\(\Leftrightarrow A=\left(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2-2x}{\left(1-x\right)\left(1+x\right)}-\frac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\frac{\left(x+1\right)\left(x-1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{2x-1}\)

\(\Leftrightarrow A=\frac{-2\left(1-x^2\right)}{\left(1-x^2\right)\left(2x-1\right)}=\frac{2}{2x-1}\)

Vậy \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

b) \(A=\frac{2}{2x-1}\left(x\ne\frac{1}{2};x\ne\pm1\right)\)

Để A nhận giá trị nguyên thì 2 chia hết cho 2x-1

Mà x nguyên => 2x-1 nguyên

=> 2x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng

2x-1-2-112
2x-1023
x-1/2013/2

Đối chiếu điều kiện

=> x=0

10 tháng 12 2020

\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

 \(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)

\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)

\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)

\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)

Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)

c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z

=> -2x ⋮ x + 1

=> -2x - 2 + 2 ⋮ x + 1

=> -2( x + 1 ) + 2 ⋮ x + 1

Vì -2( x + 1 ) ⋮ ( x + 1 )

=> 2 ⋮ x + 1

=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }

x+11-12-2
x0-21-3

Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy x ∈ { -3 ; -2 ; 0 ; 1 }