Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk giải cho câu A rồi tự suy mấy câu khác nhé!
ta có : A = 10^8 + 2/10^8 - 1
=> A = 10^8 - 1 + 3/10^8 - 1
=> A = 1+ 3/10^8 - 1
B = 10^8/10^8 - 3
=> B = 10^8 - 3 + 3/10^8 - 3
=> B = 1+ 3/10^8 - 3
vì 3/10^8 - 1 < 3/10^8 - 3
=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3
=> A < B
vậy A < B
cách này cô dạy mk đó
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
Ta có:
\(B=\frac{10^9+1}{10^{10}+1}< \frac{10^9+1+9}{10^{10}+1+9}\)
\(B< \frac{10^9+10}{10^{10}+10}\)
\(B< \frac{10.\left(10^8+1\right)}{10.\left(10^9+1\right)}\)
\(B< \frac{10^8+1}{10^9+1}=A\)
=> B < A
Ta có:
\(10A=\frac{10\left(10^8+1\right)}{10^9+1}=\frac{10^9+10}{10^9+1}=\frac{10^9+1+9}{10^9+1}=\frac{10^9+1}{10^9+1}+\frac{9}{10^9+1}=1+\frac{9}{10^9+1}\)
tương tự với B ta có:\(10B=1+\frac{9}{10^{10}+1}\)
Vì 109+1<1010+1 \(\Rightarrow\frac{9}{10^9+1}>\frac{9}{10^{10}+1}\)
\(\Rightarrow1+\frac{9}{10^9+1}>1+\frac{9}{10^{10}+1}\)
\(\Rightarrow10A>10B\Leftrightarrow A>B\)
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
Giải như mà mình không chắc nha:
a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)
Ta có:
\(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)
\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)
Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......
b) Bạn giải tương tự nha! Lười lắm :v
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
=> A = 108 + 1/109 + 1 < 108 + 1 + 9/109 + 1 + 9
=> A < 108 + 10/109 + 10
=> A < 10.(107 + 1)/10.(108 + 1)
=> A < 107 + 1/108 + 1 = B
=> A < B
Ủng hộ mk nha ★_★■_■^_-