\(\dfrac{32^{2n}}{11^{2n}}\) =81                              b, 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

1. Tìm n, biết:

a) \(\dfrac{-32}{\left(-2\right)^n}=4\)

\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)

\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)

(-2)n + 2 = (-2)5

n + 2 = 5

n = 5 - 2

n = 3.

b) \(\dfrac{8}{2^n}=2\)

\(\Rightarrow\dfrac{2^3}{2^n}=2\)

\(\Rightarrow\) 2n . 2 = 23

n + 1 = 3

n = 3 - 1

n = 2.

c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)

2n - 1 = 3

2n = 3 + 1

2n = 4

n = 4 : 2

n = 2.

2. Tính:

a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)

\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)

\(=\left(\dfrac{1}{2}\right)^7\)

\(=\dfrac{1}{128}\)

b) 273 : 93

= (33)3 : (32)3

= 39 : 36

= 33

= 27

c) 1252 : 253

= (53)2 : (52)3

= 56 : 56

= 1

d) \(\dfrac{27^2.8^5}{6^6.32^3}\)

\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)

\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)

\(=\dfrac{3^6}{6^6}\)

\(=\dfrac{1}{64}.\)

10 tháng 7 2017

B2 :

b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)

c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1

a) \(\left(0,25\right)^3\cdot32=0,015625\cdot32=0,5\)

b) \(\left(-0,125\right)^3\cdot80^4=\dfrac{-1}{512}\cdot40960000=80000\)

c) \(\dfrac{8^2\cdot4^5}{2^{20}}=\dfrac{2^{3^2}\cdot2^{2^5}}{2^{20}}=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{2^{16}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\)

d) \(\dfrac{81^{11}\cdot3^{17}}{27^{10}\cdot9^{15}}=\dfrac{3^{4^{11}}\cdot3^{17}}{3^{3^{10}}\cdot3^{2^{15}}}=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

4 tháng 11 2017

a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)

=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)

=>n=5

b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)

=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)

=>n=3

c)\(\dfrac{16}{2^n}=2\)

=>2n=\(\dfrac{16}{2}\)

=>2n=8

=>2n=23

=>n=3

d)\(\dfrac{\left(-3\right)^n}{81}=-27\)

=>(-3)n=-27.81

=>(-3)n=-2187

=>(-3)n=(-3)7

=>n=7

e)8n:2n=4

=>(23)n:2n=4

=>23n:2n=4

=>23n-n=4

=>22n=4

=>22n=22

=>2n=2

=>n=1

f)32.3n=35

=>3n=35:32

=>3n=35-2

=>3n=33

=>n=3

g) (22:4).2n=4

=>1.2n=22

=>n=2

h)3-2.34.3n=37

=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37

=>32.3n=37

=>32+n=37

=>2+n=7

=>n=5

14 tháng 7 2017

cứ phan tích cho hết đi là đc 9^6. 9^10 = (3^2)^6...................

tự làm đi

14 tháng 7 2017

1. Tính:

a. \(\dfrac{9^6.9^{10}}{3^{32}}=\dfrac{\left(3^2\right)^6.\left(3^2\right)^{10}}{3^{32}}=\dfrac{3^{12}.3^{20}}{3^{32}}=\dfrac{3^{32}}{3^{32}}=1\)

b. \(\dfrac{25^8.25^{10}}{5^{34}}=\dfrac{\left(5^2\right)^8.\left(5^2\right)^{10}}{5^{34}}=\dfrac{5^{16}.5^{20}}{5^{34}}=\dfrac{5^{36}}{5^{34}}=5^{36}:5^{34}=5^2=25\)

c. \(\dfrac{7^{56}}{49^9.49^{20}}=\dfrac{7^{56}}{\left(7^2\right)^9.\left(7^2\right)^{20}}=\dfrac{7^{56}}{7^{18}.7^{40}}=\dfrac{7^{56}}{7^{58}}=7^{56}:7^{58}=\dfrac{7^{56}}{7^{56}.7^2}=\dfrac{1}{7^2}=\dfrac{1}{49}\)

d. \(\dfrac{4^2.4^3}{2^{10}}=\dfrac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\dfrac{2^4.3^6}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)

e. \(\dfrac{2^{17}.25^5}{10^8.8^3}=\dfrac{2^{17}.\left(5^2\right)^5}{\left(2.5\right)^8.\left(2^3\right)^3}=\dfrac{2^{17}.5^{10}}{2^8.5^8.2^9}=\dfrac{2^{17}.5^{10}}{2^{17}.5^8}=\dfrac{5^{10}}{5^8}=5^{10}:5^8=5^2=25\)

f. \(\dfrac{3^{15}.25^4}{15^6.27^3}=\dfrac{3^{15}.\left(5^2\right)^4}{\left(3.5\right)^6.\left(3^3\right)^3}=\dfrac{3^{15}.5^8}{5^6.3^6.3^9}=\dfrac{3^{15}.5^8}{5^6.3^6.3^9}=\dfrac{5^8}{5^6}=5^8:5^6=5^2=25\)

2. Tính lũy thừa âm:

a. 3-2 = \(\dfrac{1}{3^2}\) = \(\dfrac{1}{9}\)

b. 2-3 = \(\dfrac{1}{2^3}\) = \(\dfrac{1}{8}\)

3. Tính :

a. \(\dfrac{\left(0,8\right)^4}{\left(0,4\right)^3}=\dfrac{\left(0,8\right)^3.0,8}{\left(0,4\right)^3}=\left(\dfrac{0,8}{0,4}\right)^3.0,8=2^3.0,8=8.0,8=6,4\)

b. \(\dfrac{\left(0,8\right)^3}{\left(0,4\right)^4}=\dfrac{\left(0,8\right)^3}{\left(0,4\right)^3:0,4}=\left(\dfrac{0,8}{0,4}\right)^3.\dfrac{1}{0,4}=2^3.2,5=8.2,5=20\)

c. \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,6\right)^5}{\left(0,2\right)^5.\left(0,2\right)}=\left(\dfrac{\left(0,6\right)}{\left(0,2\right)}\right)^5.\dfrac{1}{0,2}=3^5.\dfrac{1}{0,2}=\dfrac{3^5}{0,2}=1215\)

P/s : Chế Mai Ngọc Trâm thử tham khảo thử đi!!!

5 tháng 7 2017

1) Tính

a) 253 : 52 = (52)3 : 52 = 56 : 52 = 54 = 625

\(b)\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^9\) d) 9 . 32 . \(\dfrac{1}{81}\) . 32 = 32 . 32 . \(\dfrac{1}{3^4}\) . 32 = 9

2) Tìm x thuộc Q, biết:

a) 3x + 2 = 27

=> 3x + 2 = 33

x + 2 = 3

x = 3 - 2

x = 1

b) \(\left(\dfrac{1}{2}x-3\right)^4=81\)

\(\Rightarrow\left(\dfrac{1}{2}x-3\right)^4=3^4\)

\(\dfrac{1}{2}x-3=3^{ }\)

\(\dfrac{1}{2}x=3+3\)

\(\dfrac{1}{2}x=9\)

\(x=9:\dfrac{1}{2}\)

\(x=18\)

c) \(\left(x-\dfrac{1}{2}\right)^3=-27\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(-3\right)^3\)

\(x-\dfrac{1}{2}=-3\)

\(x=-3+\dfrac{1}{2}\)

\(x=\dfrac{-5}{2}\)

d) 5 . 5x + 1 = 125

5x + 1 = 125 : 5

5x + 1 = 25

5x + 1 = 52

x + 1 = 2

x = 2 - 1

x = 1.

16 tháng 10 2022

a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)

=>4^x=4^8

=>x=8

b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

=>2^x=2^11

=>x=11

c: =>1/6*6^x+6^x*36=6^15(1+6^3)

=>6^x=6*6^15

=>x=16

d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)

=>x=9

23 tháng 9 2017

a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)

\(\left(5x+1\right)^2=\left(\pm\dfrac{6}{9}\right)\)\(^2\)

\(5x+1=\pm\dfrac{6}{9}\)

+) \(5x+1=\dfrac{6}{9}\)

\(5x=\dfrac{6}{9}-1=\dfrac{6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{9}\)

\(x=\dfrac{-5}{9}:5=\dfrac{-1}{45}\)

+) \(5x+1=\dfrac{-6}{9}\)

\(5x=\dfrac{-6}{9}-1=\dfrac{-6}{9}-\dfrac{9}{9}\)

\(5x=\dfrac{-5}{3}\)

\(x=\dfrac{-5}{3}:5=\dfrac{-5}{15}\)

vậy \(x\in\left\{\dfrac{-5}{15};\dfrac{-1}{45}\right\}\)

17 tháng 6 2017

a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)

\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)

câu b và c xem lại đề nha

Chúc bạn học tốt!!!

17 tháng 6 2017

Đề đúng mà bạn

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

20 tháng 9 2018

1,\(\dfrac{a}{b}=\dfrac{x}{y}\) khi ay=bx

2,

a,x=\(\dfrac{-1.12}{4}\)

x=\(\dfrac{-12}{4}=-3\)

b,\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow\)2x-1=5

2x=6

x=6:2=3

c,\(\dfrac{4}{7}\).x=\(\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{3}{15}+\dfrac{10}{15}\)

\(\dfrac{4}{7}.x=\dfrac{13}{15}\)

\(x=\dfrac{13}{15}:\dfrac{4}{7}\)

x=\(\dfrac{13}{15}.\dfrac{7}{4}=\dfrac{91}{60}\)

3,ta có:\(5^{202}=\left(5^2\right)^{101}\)=\(25^{101}\)

2\(^{505}\)=\(\left(2^5\right)^{101}\)=\(32^{101}\)

vì 25<32 nên \(25^{101}< 32^{101}\) hay \(5^{202}< 2^{505}\)

20 tháng 9 2018

1) \(\dfrac{a}{b}=\dfrac{x}{y}\) khi \(a.y=b.x\)

2) \(a,\dfrac{x}{12}=\dfrac{-1}{4}\)

\(\Rightarrow4x=-12\)

\(\Rightarrow x=-\dfrac{12}{4}=-3\)

Vậy x = -3

\(b,\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)

\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)

\(\Rightarrow2x-1=5\)

\(\Rightarrow x=\dfrac{5-1}{2}=2\)

Vậy x = 2

\(c,\dfrac{4}{7}x-\dfrac{2}{3}=\dfrac{1}{5}\)

\(\dfrac{4}{7}x=\dfrac{1}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}x=\dfrac{13}{15}\)

\(\Rightarrow x=\dfrac{13}{15}:\dfrac{4}{7}=1\dfrac{31}{60}\)

Vậy \(x=1\dfrac{31}{60}\)

3) So sánh \(5^{202}\)\(2^{505}\)

\(5^{202}=\left(5^2\right)^{101}=25^{101}\)

\(2^{505}=\left(2^5\right)^{101}=32^{101}\)

\(\Rightarrow25^{101}< 32^{101}\)

\(\Rightarrow5^{202}< 2^{505}\)