Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn lưu ý ghi đề thì ghi cho thật đầy đủ yêu cầu của nó nhé.
Tính B.
Lời giải:
$m=\frac{-2}{3}; n=\frac{-1}{3}\Rightarrow m+n+1=0$
$B=m(m-n+1)-n(n+1-m)=m^2-mn+m-n^2-n+mn$
$=m^2-n^2+m-n=(m-n)(m+n+1)=(m-n).0=0$
\(B=m^2-mn+m-n^2-n+mn\\ B=m^2+m-n^2-n\\ B=\left(\dfrac{-2}{3}\right)^2-\dfrac{2}{3}-\left(\dfrac{-1}{3}\right)^2+\dfrac{1}{3}\\ B=\dfrac{4}{9}-\dfrac{2}{3}-\dfrac{1}{9}+\dfrac{1}{3}=0\)
\(B=m\left(m-n+1\right)-n\left(n+1-m\right)=m\left(m+n+1-2n\right)-n\left(m+n+1-2m\right)=\left(m+n\right)\left(m+n+1\right)-2mn+2mn=\left(m+n\right)\left(\dfrac{-2}{3}-\dfrac{1}{3}+1\right)-4mn=0-0=0\)
a)
\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)
\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)
\(\Leftrightarrow2004-x=0\) (vì \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\))
\(\Leftrightarrow x=2004\)
S={2004}
\(B=m^2-mn+m-n^2-n+mn=m^2-n^2+n-n\\ =\left(m-n\right)\left(m+n+1\right)\\ =\left(-\dfrac{2}{3}+\dfrac{1}{3}\right)\left(-\dfrac{2}{3}-\dfrac{1}{3}+1\right)=-\dfrac{1}{3}\cdot0=0\)