Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) AEBF là hình thang vuôngvì EF là đường trung bình \(\Rightarrow EF//AB\)
b) Xét hai tam giác vuông ABK và EIK có góc EKI = góc AKB nên \(\Delta ABK\approx\Delta IEK\)
\(\Rightarrow\frac{AB}{BK}=\frac{EI}{EK}\)
c) Xét \(\Delta AKB=\Delta AKH\left(ch-gn\right)\)
+ AK chung
+ Góc BAK = góc HAK
Vậy BK = HK
Gọi giao điểm của HK và AK là P
Xét \(\Delta PBK=\Delta PHK\left(c.g.c\right)\)
+ PK Chung
+ BK = HK
+ Góc PKB = góc PKH
Suy ra góc PBK = góc PHK
Ta có
\(\hept{\begin{cases}\widehat{PBK}+\widehat{ABP}=90^0\\\widehat{BAP}+\widehat{ABP}=90^0\end{cases}}\Rightarrow\widehat{PBK}=\widehat{BAP}=\widehat{IAF}\left(1\right)\)
\(\hept{\begin{cases}\widehat{EKI}=\widehat{PKB}=\widehat{PKH}\\\widehat{EIK}+\widehat{EKI}=90^0\end{cases}}\)
Mà \(\hept{\begin{cases}\widehat{PKH}+\widehat{PHK}=90^0\\\widehat{EIK}+\widehat{PKH}=90^0\end{cases}\Rightarrow}\widehat{BHK}=\widehat{EIK}\left(2\right)\)
Từ (1) và (2) ta có đpcm vì hai tam giác BKH và AFI đều là hai tam giác cân có hai góc ở đáy bằng nhau
Nên hai tam giác trên đồng dạng
d)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a,b thì mình làm được còn câu c,d thì mình chưa làm ra. Chân thành xin lỗi
a) có \(\widehat{BDC}=45^0\)(ABCD là hình vuông, BD là đường chéo)
\(\widehat{DKN}\left(hay\widehat{DKH}\right)=45^0\)(CHIK là hình vuông và KH là đường chéo)
\(\Rightarrow\widehat{BDC}+\widehat{DKN}=45^0+45^0=90^0\)
\(\Rightarrow\Delta DKN\)vuông tại N
\(\Rightarrow KN\perp DN\)
mà \(BC\perp DK\)
KN và BC cắt nhau tại H
suy ra H là trực tâm của tam giác BDK
nên \(DH\perp BK\)
b) Xét \(\Delta DMB\&\Delta KNB\)
có \(\widehat{DMB}=\widehat{KNB}\)=900
\(\widehat{DBK}chung\)
\(\Rightarrow\Delta DMB\) \(\Delta KNB\)(g-g)
\(\Rightarrow\frac{MB}{NB}=\frac{BD}{BK}\)
từ tỉ số trên ta đễ chứng minh \(\Delta BMN\)\(\Delta BDK\)
cm tương tự ta có \(\Delta CMK\)\(\Delta BDK\)
\(\Rightarrow\Delta BMN\)\(\Delta CMK\)
\(\Rightarrow\widehat{BMN}=\widehat{CMK}\)
lại có \(\hept{\begin{cases}\widehat{BMN}+\widehat{DMN}=90^0\\\widehat{CMK}+\widehat{DMC}=90^0\end{cases}}\)(\(DM\perp BK\))
\(\Rightarrow\widehat{DMN}=\widehat{DMC}\)
nên MD là phân giác của \(\widehat{NMC}\)
a. Ta sẽ chứng minh H là trực tâm tam giác BDK.
Thật vậy, \(\widehat{HKD}=45^o=\widehat{AED}\)\(\Rightarrow\)HK // AE (vì 2 góc HKD và góc AED nằm ở vị trí đồng vị) \(\Rightarrow\)KH \(\perp\)BD.
Mặt khác, BE \(\perp\)DK.
Từ hai điều trên suy ra H là trực tâm tam giác BDK.
Suy ra HD \(\perp\)BK.
b. Ý tưởng là ta sẽ lập ra các tỉ số có các đoạn DN và BD, KM và BK dựa vào tam giác đồng dạng.
Dễ dàng chứng minh: \(\Delta DNH~\Delta DMB\left(g.g\right)\)\(\Rightarrow\)\(\frac{DN}{DM}=\frac{DH}{DB}\Rightarrow DN.DB=DM.DH\)
Tương tự ta chứng minh được \(KM.KB=KH.KN\)
- Lại có \(DH.DM=DE.DK\)vì \(\Delta DEH~\Delta DMK\left(g.g\right)\)
tương tự, ta có \(KH.KN=KE.DK\left(g.g\right)\)
Vậy \(DN.DB+KM.BK=DM.DH+KH.KN=DE.DK+KE.DK=DK\left(DE+KE\right)=DK.DK\)