K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

a) câu a này chắc thiếu đề hay sai gì gì đó rồi

chứ x2+y2+1\(\ge1\forall x;y\)

b)Áp dụng bđt Bunhiacopxki:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1+1+1\right)=3\left(a^2+b^2+c^2\right)\)

<=>\(1^2\le3\left(a^2+b^2+c^2\right)\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\)

Tiếp tục áp dụng bđt Bunhiacopxki:

\(\left(a^2+b^2+c^2\right)^2\le\left(a^4+b^4+c^4\right)\left(1+1+1\right)=3\left(a^4+b^4+c^4\right)\)

<=>\(3\left(a^4+b^4+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\ge\left(\dfrac{1}{3}\right)^2\)

<=>\(3\left(a^4+b^4+c^4\right)\ge\dfrac{1}{9}\Leftrightarrow a^4+b^4+c^4\ge\dfrac{1}{27}\)

Dấu "=" xảy ra khi a=b=c=1/3

bạn Ơi câu a mk viết sai đề:

Đề như sau: CMR: \(x^2+y^2+1\ge xy+x+y\)

Mong bạn giúp mk tí.

3 tháng 4 2022

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

3 tháng 4 2022

-Tham khảo:

undefined

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

11 tháng 12 2017

a/ \(\left(a^2+b^2\right)+\left(a^2+1\right)+\left(b^2+1\right)\ge2ab+2a+2b\)

\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\)

b/ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) đúng

c/ \(M=x^4-6x^3+13x^2-12x-5\)

Đặt \(x^2-3x=a\)thì ta có:

\(M=a^2+4a-5=\left(a+2\right)^2-9\ge-9\)

Dấu = xảy ra khi:

\(x^2-3x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

20 tháng 3 2018

dự đoán của Thần thánh

\(\frac{ab}{a^2+b^2}=\frac{a^2}{2a^2}=\frac{1}{2}\)

\(VT=\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

\(p=\frac{ab}{a^2+b^2}+....+\frac{ca}{c^2+a^2};A=\frac{1}{4}\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)\)

áp dụng BDT cô si ta có

\(\frac{ab}{a^2+b^2}+\frac{\left(a^2+b^2\right)}{\frac{4}{9}}\ge2\sqrt{\frac{ab}{\frac{4}{9}}}=\frac{2}{\frac{2}{3}}\sqrt{ab}=3\sqrt{ab}\)

tương tự với các BDT còn lại suy ra

\(p+\frac{9}{4}\left(2a^2+2b^2+2c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

\(P+\frac{9}{2}\left(a^2+b^2+c^2\right)\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si ta có

\(a^2+\frac{1}{9}\ge2\sqrt{\frac{a^2}{9}}=\frac{2a}{3}\)

tương tự với b^2+c^2 ta được

\(a^2+b^2+c^2+\frac{1}{3}\ge\frac{2}{3}\left(a+b+c\right)=\frac{2}{3}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) 

" thay 1/3 vào ta được

\(p+\frac{3}{2}\ge3\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

áp dụng BDT cô si dạng " Rei " " luôn đúng với những bài ngược dấu "

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge3\sqrt[3]{\sqrt{abc}}=3\sqrt[3]{abc}\)

mà \(a+b+c\ge3\sqrt[3]{abc}\) 

thay a+b+c=1 vào ta được

\(P+\frac{3}{2}\ge3\Leftrightarrow P\ge\frac{6}{2}-\frac{3}{2}=\frac{3}{2}\) " 1 "

bây giờ tính nốt con \(A=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

áp dụng BDT \(\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a+b+c}\)

\(A=\frac{9}{4}.\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{4}\left(\frac{1}{a+b+c}\right)\)

mà a+b+C=1 suy ra

\(A\ge\frac{9}{4}\) "2"

từ 1 và 2 suy ra

\(VT=P+A\ge\frac{3}{2}+\frac{9}{4}=\frac{12}{8}+\frac{18}{8}=\frac{30}{8}=\frac{15}{4}\)

" đúng với dự đoán của thần thánh "

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

NV
29 tháng 3 2022

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

30 tháng 3 2022

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

29 tháng 3 2022

Áp dụng BĐT Svácxơ, ta có:

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{81}{12}=\dfrac{27}{4}\)

Dấu "=" ⇔ a=b=c=3

NV
29 tháng 3 2022

Áp dụng BĐT Cô-si:

\(\dfrac{a^2}{b+1}+\dfrac{9}{16}\left(b+1\right)\ge2\sqrt{\dfrac{9a^2\left(b+1\right)}{16\left(b+1\right)}}=\dfrac{3a}{2}\) 

Tương tự: \(\dfrac{b^2}{c+1}+\dfrac{9}{16}\left(c+1\right)\ge\dfrac{3b}{2}\) ; \(\dfrac{c^2}{a+1}+\dfrac{9}{16}\left(a+1\right)\ge\dfrac{3c}{2}\)

Cộng vế:

\(VT+\dfrac{9}{16}\left(a+b+c+3\right)\ge\dfrac{3}{2}\left(a+b+c\right)\)

\(\Leftrightarrow VT+\dfrac{27}{4}\ge\dfrac{27}{2}\Rightarrow VT\ge\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)