K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

a) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\\\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\end{matrix}\right.\Rightarrowđpcm\)

b) \(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)

\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\)\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)

\(\Rightarrow\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\) nên \(x-2018=0\Leftrightarrow x=2018\)

5 tháng 12 2023

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

5 tháng 12 2023

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)

 

      

 

AH
Akai Haruma
Giáo viên
2 tháng 3 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$.

Khi đó:

$\frac{5a+3b}{5a-3b}=\frac{5bk+3bk}{5bk-3bk}=\frac{8bk}{2bk}=4(1)$

$\frac{5c+3d}{5c-3d}=\frac{5dk+3dk}{5dk-3dk}=\frac{8dk}{2dk}=4(2)$

Từ $(1); (2)$ suy ra điều phải chứng minh.

 

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)

hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)

 

3 tháng 1 2018

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có :

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

12 tháng 12 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3b}{3d}=\dfrac{5a}{5c}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\\ \Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

31 tháng 10 2021

 Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!

31 tháng 10 2021

\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)

\(a,\) Áp dụng tcdtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)

\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)

17 tháng 8 2017

Mk chỉ làm 1 câu thôi mấy câu sau tương tự theo cách đó nhoa:v

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\dfrac{b^4}{d^4}\)

\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{bk^4+b^4}{dk^4+d^4}=\dfrac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\dfrac{b^4}{d^4}\)

\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\Rightarrowđpcm\)

17 tháng 8 2017

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^4}{c^4}\)=\(\dfrac{b^4}{d^4}\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^4\)(2)
Từ (1) và (2)suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^4\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(đpcm)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a+3b}{5c+3d}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5b}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)=\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Do đó: \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{a}{c}\right)^2\)\(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{b}{d}\right)^2\)
=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)\(\dfrac{ab}{cd}\)=\(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{7a^2}{7c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{3ab}{3cd}\)=\(\dfrac{7a^2+3ab}{7c^2+3cd}\)(1)
Ta có: \(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=> \(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{7a^2+3ab}{7c^2+3cd}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)=\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)

19 tháng 3 2017

a)Đặt \(\dfrac{a}{b}=\dfrac{c}{b}=k\left(k\ne0\right)\)

=> a=bk; c=dk

+) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

+) \(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2)=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b) cũng đặt và cm tương tự

6 tháng 8 2018

viết nhầm thành \(\dfrac{c}{b}\) kìa bn

29 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)\(\Rightarrow\dfrac{\left(bk-b\right)^2}{\left(ck-c\right)^2}=\dfrac{bk.b}{dk.d}\)

\(\Rightarrow\dfrac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)

Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)

b, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a+3b}{5c+3d}\)